Identification of a point mutation in the human lysosomal alpha-glucosidase gene causing infantile glycogenosis type II. 1991

M M Hermans, and E de Graaff, and M A Kroos, and H A Wisselaar, and B A Oostra, and A J Reuser
Department of Cell Biology & Genetics, Erasmus University, Rotterdam, The Netherlands.

Two patients in a consanguineous Indian family with infantile glycogenosis type II were found to have a G to A transition in exon 11 of the human lysosomal alpha-glucosidase gene. Both patients were homozygous and both parents were heterozygous for the mutant allele. The mutation causes a Glu to Lys substitution at amino acid position 521, just three amino acids downstream from the catalytic site at Asp-518. The mutation was introduced in wild type lysosomal alpha-glucosidase cDNA and the mutant construct was expressed in vitro and in vivo. The Glu to Lys substitution is proven to account for the abnormal physical properties of the patients lysosomal alpha-glucosidase precursor and to prevent the formation of catalytically active enzyme. In homozygous form it leads to the severe infantile phenotype of glycogenosis type II.

UI MeSH Term Description Entries
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D006009 Glycogen Storage Disease Type II An autosomal recessively inherited glycogen storage disease caused by GLUCAN 1,4-ALPHA-GLUCOSIDASE deficiency. Large amounts of GLYCOGEN accumulate in the LYSOSOMES of skeletal muscle (MUSCLE, SKELETAL); HEART; LIVER; SPINAL CORD; and BRAIN. Three forms have been described: infantile, childhood, and adult. The infantile form is fatal in infancy and presents with hypotonia and a hypertrophic cardiomyopathy (CARDIOMYOPATHY, HYPERTROPHIC). The childhood form usually presents in the second year of life with proximal weakness and respiratory symptoms. The adult form consists of a slowly progressive proximal myopathy. (From Muscle Nerve 1995;3:S61-9; Menkes, Textbook of Child Neurology, 5th ed, pp73-4) Acid Maltase Deficiency Disease,Generalized Glycogenosis,Glycogenosis 2,Lysosomal alpha-1,4-Glucosidase Deficiency Disease,Pompe Disease,Acid Alpha-Glucosidase Deficiency,Acid Maltase Deficiency,Adult Glycogen Storage Disease Type II,Alpha-1,4-Glucosidase Deficiency,Deficiency Disease, Acid Maltase,Deficiency Disease, Lysosomal alpha-1,4-Glucosidase,Deficiency of Alpha-Glucosidase,GAA Deficiency,GSD II,GSD2,Glycogen Storage Disease II,Glycogen Storage Disease Type 2,Glycogen Storage Disease Type II, Adult,Glycogen Storage Disease Type II, Infantile,Glycogen Storage Disease Type II, Juvenile,Glycogenosis Type II,Infantile Glycogen Storage Disease Type II,Juvenile Glycogen Storage Disease Type II,Pompe's Disease,Acid Alpha Glucosidase Deficiency,Acid Alpha-Glucosidase Deficiencies,Acid Maltase Deficiencies,Alpha 1,4 Glucosidase Deficiency,Alpha-1,4-Glucosidase Deficiencies,Alpha-Glucosidase Deficiencies,Alpha-Glucosidase Deficiencies, Acid,Alpha-Glucosidase Deficiency,Alpha-Glucosidase Deficiency, Acid,Deficiencies, Acid Alpha-Glucosidase,Deficiencies, Acid Maltase,Deficiencies, Alpha-1,4-Glucosidase,Deficiencies, GAA,Deficiency of Alpha Glucosidase,Deficiency, Acid Alpha-Glucosidase,Deficiency, Acid Maltase,Deficiency, Alpha-1,4-Glucosidase,Deficiency, GAA,Disease, Pompe,Disease, Pompe's,GAA Deficiencies,GSD2s,Generalized Glycogenoses,Glycogenoses, Generalized,Glycogenosis, Generalized,Lysosomal alpha 1,4 Glucosidase Deficiency Disease,Maltase Deficiencies, Acid,Pompes Disease,Type II, Glycogenosis,Type IIs, Glycogenosis
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph

Related Publications

M M Hermans, and E de Graaff, and M A Kroos, and H A Wisselaar, and B A Oostra, and A J Reuser
March 2004, Molecular genetics and metabolism,
M M Hermans, and E de Graaff, and M A Kroos, and H A Wisselaar, and B A Oostra, and A J Reuser
December 1995, Nihon rinsho. Japanese journal of clinical medicine,
M M Hermans, and E de Graaff, and M A Kroos, and H A Wisselaar, and B A Oostra, and A J Reuser
May 1998, Clinical genetics,
M M Hermans, and E de Graaff, and M A Kroos, and H A Wisselaar, and B A Oostra, and A J Reuser
January 1981, Enzyme,
M M Hermans, and E de Graaff, and M A Kroos, and H A Wisselaar, and B A Oostra, and A J Reuser
April 1989, Archives of neurology,
M M Hermans, and E de Graaff, and M A Kroos, and H A Wisselaar, and B A Oostra, and A J Reuser
March 2002, Current molecular medicine,
M M Hermans, and E de Graaff, and M A Kroos, and H A Wisselaar, and B A Oostra, and A J Reuser
September 1979, Proceedings of the National Academy of Sciences of the United States of America,
M M Hermans, and E de Graaff, and M A Kroos, and H A Wisselaar, and B A Oostra, and A J Reuser
March 1967, The Journal of laboratory and clinical medicine,
M M Hermans, and E de Graaff, and M A Kroos, and H A Wisselaar, and B A Oostra, and A J Reuser
July 2002, Human molecular genetics,
M M Hermans, and E de Graaff, and M A Kroos, and H A Wisselaar, and B A Oostra, and A J Reuser
June 2008, Journal of neurology,
Copied contents to your clipboard!