Inhibition of pituitary gonadotropin secretion by the gonadotropin-releasing hormone antagonist antide. I. In vitro studies on mechanism of action. 1991

D R Danforth, and R F Williams, and K Gordon, and G D Hodgen
Jones Institute for Reproductive Medicine, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk 23510.

The GnRH antagonist antide is among the most promising "third generation" compounds available for clinical evaluation. In primates, antide manifests prolonged (several weeks) and reversible inhibition of pituitary gonadotropin secretion after a single high dose injection. In the present study, we have examined the effects of antide on pituitary gonadotropin secretion in vitro. Dispersed anterior pituitary cells from adult female rats were plated (48 h; 5 x 10(5) cells/well), washed, and exposed to increasing concentrations of antide for up to 48 h. Media were removed, and cells were washed twice and then incubated with GnRH (1 x 10(-8) M) plus antide for 4 h. Media and cell lysates were assayed for LH/FSH by RIA. Antide had no effect on basal LH/FSH secretion at any dose tested (10(-6)-10(-12) M). In contrast, GnRH-stimulated LH/FSH secretion was inhibited by this GnRH antagonist in a dose- and time-dependent manner. When incubated simultaneously, antide blocked GnRH-stimulated gonadotropin secretion, with a maximal effect at 10(-6) M (ED50, 10(-7) M). Preincubation of pituitary cells with antide for 6-48 h before GnRH exposure shifted the dose-response curve to the left; the maximally effective dose was 10(-8) M; the ED50 was 10(-10) M antide after 48-h preincubation. Intracellular LH/FSH levels increased concomitant with the decrease in secreted gonadotropins. Total LH/FSH levels (secreted plus cell content) remained unchanged. The inhibition of LH secretion by antide was specific for GnRH-stimulated gonadotropin secretion; antide had no effect on K(+)-stimulated LH secretion. Moreover, antide had little or no residual effect on LH secretion; full recovery of GnRH responsiveness in vitro occurred within 4 h after removal of antide. Lineweaver-Burke analysis of antide inhibition of GnRH-stimulated LH secretion indicated that antide is a direct competitor of GnRH at the level of the pituitary GnRH receptor. In summary, antide is a pure antagonist of GnRH stimulation of gonadotropin secretion; no agonistic actions of antide were manifest in vitro. Moreover, antide has no apparent noxious or toxic effect on pituitary cells in culture; the actions of antide are immediately reversible upon removal of antide from pituitary gonadotropes. We conclude that the long term inhibition of gonadotropin secretion by antide in vivo is not due to deleterious effects of this compound at the level of the pituitary gonadotrope.

UI MeSH Term Description Entries
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005260 Female Females
D005640 Follicle Stimulating Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. FSH (Follicle Stimulating Hormone),Follicle-Stimulating Hormone,Follitropin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013007 Growth Hormone-Releasing Hormone A peptide of 44 amino acids in most species that stimulates the release and synthesis of GROWTH HORMONE. GHRF (or GRF) is synthesized by neurons in the ARCUATE NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, GHRF stimulates GH release by the SOMATOTROPHS in the PITUITARY GLAND. Growth Hormone-Releasing Factor,Somatocrinin,Somatotropin-Releasing Factor 44,Somatotropin-Releasing Hormone,GHRH 1-44,GRF 1-44,Growth Hormone-Releasing Factor 44,Human Pancreatic Growth Hormone-Releasing Factor,Somatoliberin,hpGRF 44,Growth Hormone Releasing Factor,Growth Hormone Releasing Factor 44,Growth Hormone Releasing Hormone,Somatotropin Releasing Factor 44,Somatotropin Releasing Hormone

Related Publications

D R Danforth, and R F Williams, and K Gordon, and G D Hodgen
April 1982, Science (New York, N.Y.),
D R Danforth, and R F Williams, and K Gordon, and G D Hodgen
July 1994, Endocrinology,
D R Danforth, and R F Williams, and K Gordon, and G D Hodgen
April 2002, Journal of the American Chemical Society,
D R Danforth, and R F Williams, and K Gordon, and G D Hodgen
March 1987, The Journal of clinical endocrinology and metabolism,
D R Danforth, and R F Williams, and K Gordon, and G D Hodgen
January 1981, Endocrine reviews,
D R Danforth, and R F Williams, and K Gordon, and G D Hodgen
March 2005, Biology of reproduction,
D R Danforth, and R F Williams, and K Gordon, and G D Hodgen
January 1989, Journal of reproduction and fertility. Supplement,
D R Danforth, and R F Williams, and K Gordon, and G D Hodgen
September 1996, Molecular psychiatry,
D R Danforth, and R F Williams, and K Gordon, and G D Hodgen
October 1993, Fertility and sterility,
D R Danforth, and R F Williams, and K Gordon, and G D Hodgen
January 1987, Recent progress in hormone research,
Copied contents to your clipboard!