A second maternally expressed Drosophila gene encodes a putative RNA helicase of the "DEAD box" family. 1991

T de Valoir, and M A Tucker, and E J Belikoff, and L A Camp, and C Bolduc, and K Beckingham
Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251.

Recently, a family of proteins containing the conserved motif Asp-Glu-Ala-Asp, the "DEAD box" proteins, has been identified. This family is typified by the eukaryotic translation initiation factor eIF4A, and its members are believed to share the functional property of ATP-dependent RNA unwinding. One of the previously identified members of this family (vasa) is the product of a maternally expressed gene from Drosophila melanogaster that is known to play a role in the formation of the embryonic body plan. We report here the isolation of a Drosophila gene that has an mRNA expression pattern somewhat similar to that of vasa and also encodes a DEAD box protein. We have termed this gene ME31B to reflect its maternal (ovarian germ-line) expression and its location within the 31B chromosome region. Comparisons with the other members of this family reveal that although ME31B is most like the protein Tif1/Tif2, which probably represents the Saccharomyces cerevisiae version of eIF4A, it is unlikely that ME31B represents the Drosophila eIF4A protein per se. A search for mutations in the ME31B gene has established that the P element which causes the female-sterile mutation flipper lies in the 3' flank of the ME31B gene.

UI MeSH Term Description Entries
D007247 Infertility, Female Diminished or absent ability of a female to achieve conception. Sterility, Female,Sterility, Postpartum,Sub-Fertility, Female,Subfertility, Female,Female Infertility,Female Sterility,Female Sub-Fertility,Female Subfertility,Postpartum Sterility,Sub Fertility, Female
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005260 Female Females
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

T de Valoir, and M A Tucker, and E J Belikoff, and L A Camp, and C Bolduc, and K Beckingham
March 2000, Mechanisms of development,
T de Valoir, and M A Tucker, and E J Belikoff, and L A Camp, and C Bolduc, and K Beckingham
April 1993, Yeast (Chichester, England),
T de Valoir, and M A Tucker, and E J Belikoff, and L A Camp, and C Bolduc, and K Beckingham
June 2009, Developmental biology,
T de Valoir, and M A Tucker, and E J Belikoff, and L A Camp, and C Bolduc, and K Beckingham
May 1998, Current biology : CB,
T de Valoir, and M A Tucker, and E J Belikoff, and L A Camp, and C Bolduc, and K Beckingham
December 1995, Molecular and biochemical parasitology,
T de Valoir, and M A Tucker, and E J Belikoff, and L A Camp, and C Bolduc, and K Beckingham
March 1995, Genomics,
T de Valoir, and M A Tucker, and E J Belikoff, and L A Camp, and C Bolduc, and K Beckingham
January 1996, Cytogenetics and cell genetics,
T de Valoir, and M A Tucker, and E J Belikoff, and L A Camp, and C Bolduc, and K Beckingham
April 1996, Genomics,
T de Valoir, and M A Tucker, and E J Belikoff, and L A Camp, and C Bolduc, and K Beckingham
October 1993, Biochimica et biophysica acta,
T de Valoir, and M A Tucker, and E J Belikoff, and L A Camp, and C Bolduc, and K Beckingham
January 1999, Nucleic acids research,
Copied contents to your clipboard!