High efficiency gene transfection by electroporation using a radio-frequency electric field. 1991

D C Chang, and P Q Gao, and B L Maxwell
Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030.

In order to develop a safe and effective way to introduce exogenous genes into cells, we have experimented with a new method of electroporation which uses a radio-frequency (RF) electric field to permeabilize the cell membrane. This RF method has several advantages over the conventional electroporation method which uses a direct current (DC) field. We have shown that the RF electroporation method can be used to introduce marker genes into a wide variety of cell lines, including COS-M6, CV-1, CHO, 3T3 and hepatocytes, and is able to increase substantially the efficiency of gene transfection. (For example, the amount of DNA required for transfecting two million COS-M6 cells can be as low as 0.1 microgram). The transfection efficiency is shown to be affected by a number of factors, including cell type, field strength, pulse protocol and medium buffer. Because of its wide range of applications, high transfection efficiency and lack of harmful side-effect, the RF electroporation method would be particularly useful for introducing genes into human cells for gene therapy.

UI MeSH Term Description Entries
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011846 Radio Waves Electromagnetic waves with frequencies between about 3 kilohertz (very low frequency - VLF) and 300,000 megahertz (extremely high frequency - EHF). They are used in television and radio broadcasting, land and satellite communications systems, radionavigation, radiolocation, and DIATHERMY. The highest frequency radio waves are MICROWAVES. Hertzian Waves,High Frequency Waves,Radiowave,Radiowaves,Short Waves,Very High Frequency Waves,Frequency Wave, High,Frequency Waves, High,High Frequency Wave,Radio Wave,Short Wave,Wave, High Frequency,Wave, Radio,Wave, Short,Waves, Hertzian,Waves, High Frequency,Waves, Radio,Waves, Short
D002021 Buffers A chemical system that functions to control the levels of specific ions in solution. When the level of hydrogen ion in solution is controlled the system is called a pH buffer. Buffer
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004560 Electricity The physical effects involving the presence of electric charges at rest and in motion.
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005819 Genetic Markers A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event. Chromosome Markers,DNA Markers,Markers, DNA,Markers, Genetic,Genetic Marker,Marker, Genetic,Chromosome Marker,DNA Marker,Marker, Chromosome,Marker, DNA,Markers, Chromosome

Related Publications

D C Chang, and P Q Gao, and B L Maxwell
March 2000, BioTechniques,
D C Chang, and P Q Gao, and B L Maxwell
February 2001, Preparative biochemistry & biotechnology,
D C Chang, and P Q Gao, and B L Maxwell
January 1991, Biochimica et biophysica acta,
D C Chang, and P Q Gao, and B L Maxwell
April 2004, Molecular therapy : the journal of the American Society of Gene Therapy,
D C Chang, and P Q Gao, and B L Maxwell
May 1991, Proceedings of the National Academy of Sciences of the United States of America,
D C Chang, and P Q Gao, and B L Maxwell
November 2018, The Review of scientific instruments,
D C Chang, and P Q Gao, and B L Maxwell
January 2006, Molecular therapy : the journal of the American Society of Gene Therapy,
D C Chang, and P Q Gao, and B L Maxwell
September 2000, International journal of pharmaceutics,
D C Chang, and P Q Gao, and B L Maxwell
April 1999, The Histochemical journal,
Copied contents to your clipboard!