The structure of genetically modified iron-sulfur cluster F(x) in photosystem I as determined by X-ray absorption spectroscopy. 2009

Xiao-Min Gong, and Yehoshua Hochman, and Tal Lev, and Grant Bunker, and Chanoch Carmeli
Department of Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel.

Photosystem I (PS I) mediates light-induced electron transfer from P700 through a chlorophyll a, a quinone and a [4Fe-4S] iron-sulfur cluster F(X), located on the core subunits PsaA/B to iron-sulfur clusters F(A/B) on subunit PsaC. Structure function relations in the native and in the mutant (psaB-C565S/D566E) of the cysteine ligand of F(X) cluster were studied by X-ray absorption spectroscopy (EXAFS) and transient spectroscopy. The structure of F(X) was determined in PS I lacking clusters F(A/B) by interruption of the psaC2 gene of PS I in the cyanobacterium Synechocystis sp PCC 6803. PsaC-deficient mutant cells assembled the core subunits of PS I which mediated electron transfer mostly to the phylloquinone. EXAFS analysis of the iron resolved a [4Fe-4S] cluster in the native PsaC-deficient PS I. Each iron had 4 sulfur and 3 iron atoms in the first and second shells with average Fe-S and Fe-Fe distances of 2.27 A and 2.69 A, respectively. In the C565S/D566E serine mutant, one of the irons of the cluster was ligated to three oxygen atoms with Fe-O distance of 1.81 A. The possibility that the structural changes induced an increase in the reorganization energy that consequently decreased the rate of electron transfer from the phylloquinone to F(X) is discussed.

UI MeSH Term Description Entries
D007506 Iron-Sulfur Proteins A group of proteins possessing only the iron-sulfur complex as the prosthetic group. These proteins participate in all major pathways of electron transport: photosynthesis, respiration, hydroxylation and bacterial hydrogen and nitrogen fixation. Iron-Sulfur Protein,Iron Sulfur Proteins,Iron Sulfur Protein,Protein, Iron-Sulfur,Proteins, Iron Sulfur,Proteins, Iron-Sulfur,Sulfur Proteins, Iron
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D000458 Cyanobacteria A phylum of oxygenic photosynthetic bacteria comprised of unicellular to multicellular bacteria possessing CHLOROPHYLL a and carrying out oxygenic PHOTOSYNTHESIS. Cyanobacteria are the only known organisms capable of fixing both CARBON DIOXIDE (in the presence of light) and NITROGEN. Cell morphology can include nitrogen-fixing heterocysts and/or resting cells called akinetes. Formerly called blue-green algae, cyanobacteria were traditionally treated as ALGAE. Algae, Blue-Green,Blue-Green Bacteria,Cyanophyceae,Algae, Blue Green,Bacteria, Blue Green,Bacteria, Blue-Green,Blue Green Algae,Blue Green Bacteria,Blue-Green Algae
D013052 Spectrometry, X-Ray Emission The spectrometric analysis of fluorescent X-RAYS, i.e. X-rays emitted after bombarding matter with high energy particles such as PROTONS; ELECTRONS; or higher energy X-rays. Identification of ELEMENTS by this technique is based on the specific type of X-rays that are emitted which are characteristic of the specific elements in the material being analyzed. The characteristic X-rays are distinguished and/or quantified by either wavelength dispersive or energy dispersive methods. Particle-Induced X-Ray Emission Spectrometry,Proton-Induced X-Ray Emission Spectrometry,Spectrometry, Particle-Induced X-Ray Emission,Spectrometry, Proton-Induced X-Ray Emission,Spectrometry, X-Ray Fluorescence,X-Ray Emission Spectrometry,X-Ray Emission Spectroscopy,X-Ray Fluorescence Spectrometry,Energy Dispersive X-Ray Fluorescence Spectrometry,Energy Dispersive X-Ray Fluorescence Spectroscopy,Energy Dispersive X-Ray Spectrometry,Energy Dispersive X-Ray Spectroscopy,Particle Induced X Ray Emission Spectrometry,Proton Induced X Ray Emission Spectrometry,Spectrometry, Particle Induced X Ray Emission,Spectrometry, Proton Induced X Ray Emission,Spectrometry, Xray Emission,Wavelength Dispersive X-Ray Fluorescence Spectrometry,Wavelength Dispersive X-Ray Fluorescence Spectroscopy,Wavelength Dispersive X-Ray Spectrometry,Wavelength Dispersive X-Ray Spectroscopy,X-Ray Fluorescence Spectroscopy,Xray Emission Spectroscopy,Emission Spectrometry, X-Ray,Emission Spectrometry, Xray,Emission Spectroscopy, X-Ray,Emission Spectroscopy, Xray,Energy Dispersive X Ray Fluorescence Spectrometry,Energy Dispersive X Ray Fluorescence Spectroscopy,Energy Dispersive X Ray Spectrometry,Energy Dispersive X Ray Spectroscopy,Fluorescence Spectrometry, X-Ray,Fluorescence Spectroscopy, X-Ray,Spectrometry, X Ray Emission,Spectrometry, X Ray Fluorescence,Spectroscopy, X-Ray Emission,Spectroscopy, X-Ray Fluorescence,Spectroscopy, Xray Emission,Wavelength Dispersive X Ray Fluorescence Spectrometry,Wavelength Dispersive X Ray Fluorescence Spectroscopy,Wavelength Dispersive X Ray Spectrometry,Wavelength Dispersive X Ray Spectroscopy,X Ray Emission Spectrometry,X Ray Emission Spectroscopy,X Ray Fluorescence Spectrometry,X Ray Fluorescence Spectroscopy,X-Ray Fluorescence Spectroscopies,Xray Emission Spectrometry
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses
D045331 Photosystem I Protein Complex A large multisubunit protein complex that is found in the THYLAKOID MEMBRANE. It uses light energy derived from LIGHT-HARVESTING PROTEIN COMPLEXES to drive electron transfer reactions that result in either the reduction of NADP to NADPH or the transport of PROTONS across the membrane. Photosystem I Reaction Center,Photosystem I
D018360 Crystallography, X-Ray The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) X-Ray Crystallography,Crystallography, X Ray,Crystallography, Xray,X Ray Crystallography,Xray Crystallography,Crystallographies, X Ray,X Ray Crystallographies
D020524 Thylakoids Membranous cisternae of the CHLOROPLAST containing photosynthetic pigments, reaction centers, and the electron-transport chain. Each thylakoid consists of a flattened sac of membrane enclosing a narrow intra-thylakoid space (Lackie and Dow, Dictionary of Cell Biology, 2nd ed). Individual thylakoids are interconnected and tend to stack to form aggregates called grana. They are found in cyanobacteria and all plants. Grana,Thylakoid Membrane,Membrane, Thylakoid,Membranes, Thylakoid,Thylakoid,Thylakoid Membranes

Related Publications

Xiao-Min Gong, and Yehoshua Hochman, and Tal Lev, and Grant Bunker, and Chanoch Carmeli
May 1988, Biochemistry,
Xiao-Min Gong, and Yehoshua Hochman, and Tal Lev, and Grant Bunker, and Chanoch Carmeli
February 1976, Proceedings of the National Academy of Sciences of the United States of America,
Xiao-Min Gong, and Yehoshua Hochman, and Tal Lev, and Grant Bunker, and Chanoch Carmeli
October 2018, Chemical communications (Cambridge, England),
Xiao-Min Gong, and Yehoshua Hochman, and Tal Lev, and Grant Bunker, and Chanoch Carmeli
October 1975, Proceedings of the National Academy of Sciences of the United States of America,
Xiao-Min Gong, and Yehoshua Hochman, and Tal Lev, and Grant Bunker, and Chanoch Carmeli
October 1991, Physical review. B, Condensed matter,
Xiao-Min Gong, and Yehoshua Hochman, and Tal Lev, and Grant Bunker, and Chanoch Carmeli
September 2015, Proceedings of the National Academy of Sciences of the United States of America,
Xiao-Min Gong, and Yehoshua Hochman, and Tal Lev, and Grant Bunker, and Chanoch Carmeli
March 2015, The journal of physical chemistry. A,
Xiao-Min Gong, and Yehoshua Hochman, and Tal Lev, and Grant Bunker, and Chanoch Carmeli
November 1982, Biochimica et biophysica acta,
Xiao-Min Gong, and Yehoshua Hochman, and Tal Lev, and Grant Bunker, and Chanoch Carmeli
November 2019, The journal of physical chemistry letters,
Xiao-Min Gong, and Yehoshua Hochman, and Tal Lev, and Grant Bunker, and Chanoch Carmeli
January 1991, Proteins,
Copied contents to your clipboard!