Sex steroid control of gonadotropin secretion in the human male. I. Effects of testosterone administration in normal and gonadotropin-releasing hormone-deficient men. 1991

J S Finkelstein, and R W Whitcomb, and L S O'Dea, and C Longcope, and D A Schoenfeld, and W F Crowley
Department of Medicine, Massachusetts General Hospital 02114.

The precise sites of action of the negative feed-back effects of gonadal steroids in men remain unclear. To determine whether testosterone (T) administration can suppress gonadotropin secretion directly at the level of the pituitary, the pituitary responses to physiological doses of GnRH were assessed in six men with complete GnRH deficiency, whose pituitary-gonadal function had been normalized with long term pulsatile GnRH delivery, before and during a 4-day continuous T infusion (15 mg/day). Their responses were compared with the effects of identical T infusions on spontaneous gonadotropin secretion and the response to a 100-micrograms GnRH bolus in six normal men. Both groups were monitored with 15 h of frequent blood sampling before and during the last day of the T infusion. In the GnRH-deficient men, the first three GnRH doses were identical and were chosen to produce LH pulses with amplitudes in the midphysiological range of our normal men (i.e. a physiological dose), while the last four doses spanned 1.5 log orders (7.5, 25, 75, and 250 ng/kg). The 250 ng/kg dose was always administered last because it is known to be pharmacological. In the GnRH-deficient men, mean LH (P less than 0.02) and FSH (P less than 0.01) levels as well as LH pulse amplitude (P less than 0.05) decreased significantly during T infusion, demonstrating a direct pituitary-suppressive effect of T and/or its metabolites. Mean LH levels were suppressed to a greater extent in the normal than in the GnRH-deficient men (58 +/- 15% vs. 28 +/- 7%; P less than 0.05). In addition, LH frequency decreased significantly (P less than 0.01) during T administration in the normal men. These latter two findings suggest that T administration also suppresses hypothalamic GnRH release. T was unable to suppress gonadotropin secretion in one GnRH-deficient and one normal man. In both groups, the suppressive effect of T administration was present only in response to physiological doses of GnRH. Because the pituitary- and hypothalamus-suppressive effects of T could be mediated by its aromatization to estrogens, five GnRH-deficient and five normal men underwent identical T infusions with concomitant administration of the aromatase inhibitor testolactone (TL; 500 mg, orally, every 6 h). As an additional control, four GnRH-deficient and four normal men received TL alone. TL administration completely prevented the effect of T administration to suppress gonadotropin secretion in both the normal and GnRH-deficient men, and mean LH levels increased significantly in both the GnRH-deficient (P less than 0.01) and the normal (P less than 0.001) men who received TL alone. The increase in mean LH levels was greater (P less than 0.01) in the normal men who received TL alone than in the normal men who received T plus TL, thus revealing a direct effect of androgens in normal men. Measurements of T and estradiol production rates in three men demonstrated that TL effectively blocked aromatization.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007262 Infusions, Intravenous The long-term (minutes to hours) administration of a fluid into the vein through venipuncture, either by letting the fluid flow by gravity or by pumping it. Drip Infusions,Intravenous Drip,Intravenous Infusions,Drip Infusion,Drip, Intravenous,Infusion, Drip,Infusion, Intravenous,Infusions, Drip,Intravenous Infusion
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D007987 Gonadotropin-Releasing Hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND. FSH-Releasing Hormone,GnRH,Gonadoliberin,Gonadorelin,LH-FSH Releasing Hormone,LHRH,Luliberin,Luteinizing Hormone-Releasing Hormone,Cystorelin,Dirigestran,Factrel,Gn-RH,Gonadorelin Acetate,Gonadorelin Hydrochloride,Kryptocur,LFRH,LH-RH,LH-Releasing Hormone,LHFSH Releasing Hormone,LHFSHRH,FSH Releasing Hormone,Gonadotropin Releasing Hormone,LH FSH Releasing Hormone,LH Releasing Hormone,Luteinizing Hormone Releasing Hormone,Releasing Hormone, LHFSH
D008297 Male Males
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D005640 Follicle Stimulating Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. FSH (Follicle Stimulating Hormone),Follicle-Stimulating Hormone,Follitropin
D006062 Gonadotropins Hormones that stimulate gonadal functions such as GAMETOGENESIS and sex steroid hormone production in the OVARY and the TESTIS. Major gonadotropins are glycoproteins produced primarily by the adenohypophysis (GONADOTROPINS, PITUITARY) and the placenta (CHORIONIC GONADOTROPIN). In some species, pituitary PROLACTIN and PLACENTAL LACTOGEN exert some luteotropic activities. Gonadotropin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000284 Administration, Oral The giving of drugs, chemicals, or other substances by mouth. Drug Administration, Oral,Administration, Oral Drug,Oral Administration,Oral Drug Administration,Administrations, Oral,Administrations, Oral Drug,Drug Administrations, Oral,Oral Administrations,Oral Drug Administrations

Related Publications

J S Finkelstein, and R W Whitcomb, and L S O'Dea, and C Longcope, and D A Schoenfeld, and W F Crowley
July 1981, The Journal of clinical endocrinology and metabolism,
J S Finkelstein, and R W Whitcomb, and L S O'Dea, and C Longcope, and D A Schoenfeld, and W F Crowley
June 1988, The Journal of clinical investigation,
J S Finkelstein, and R W Whitcomb, and L S O'Dea, and C Longcope, and D A Schoenfeld, and W F Crowley
June 1990, Endocrinology,
J S Finkelstein, and R W Whitcomb, and L S O'Dea, and C Longcope, and D A Schoenfeld, and W F Crowley
February 1993, Biology of reproduction,
J S Finkelstein, and R W Whitcomb, and L S O'Dea, and C Longcope, and D A Schoenfeld, and W F Crowley
September 1987, Fertility and sterility,
J S Finkelstein, and R W Whitcomb, and L S O'Dea, and C Longcope, and D A Schoenfeld, and W F Crowley
March 2008, The Journal of clinical endocrinology and metabolism,
J S Finkelstein, and R W Whitcomb, and L S O'Dea, and C Longcope, and D A Schoenfeld, and W F Crowley
February 1988, Journal of animal science,
J S Finkelstein, and R W Whitcomb, and L S O'Dea, and C Longcope, and D A Schoenfeld, and W F Crowley
June 1987, The Journal of clinical endocrinology and metabolism,
J S Finkelstein, and R W Whitcomb, and L S O'Dea, and C Longcope, and D A Schoenfeld, and W F Crowley
July 1995, Fertility and sterility,
J S Finkelstein, and R W Whitcomb, and L S O'Dea, and C Longcope, and D A Schoenfeld, and W F Crowley
August 1985, Biology of reproduction,
Copied contents to your clipboard!