Measuring mRNA stability during early Drosophila embryogenesis. 2008

Jennifer L Semotok, and J Timothy Westwood, and Aaron L Goldman, and Ramona L Cooperstock, and Howard D Lipshitz
Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Ontario, Canada.

Maternal mRNAs play a major role in directing early Drosophila melanogaster development, and thus, precise posttranscriptional regulation of these messages is imperative for normal embryogenesis. Although initially abundant on egg deposition, a subset of these maternal mRNAs is targeted for destruction during the first 2 to 3 h of embryogenesis. In this chapter, we describe molecular methods to determine the kinetics and mechanisms of maternal mRNA decay in the early D. melanogaster embryo. We show how both unfertilized eggs and fertilized embryos can be used to identify maternal mRNAs destined for degradation, to explain changes in decay kinetics over time, and to uncover the molecular mechanisms of targeted maternal mRNA turnover. In the first section, we explore the methods and outcomes of measuring decay on a "gene-by-gene" basis, which involves examination of a small number of transcripts by Northern blotting, RNA dot blotting, and real-time RT-PCR. In the second section, we provide a comprehensive examination of the applications of microarray technology to study global changes in maternal mRNA decay during early development. Genome-wide surveys of maternal mRNA turnover provide a wealth of information regarding the magnitude, temporal regulation, and genetic control of maternal mRNA turnover. Methods that permit the collection and analysis of highly reproducible and statistically robust data in this developmental system are discussed.

UI MeSH Term Description Entries
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D047108 Embryonic Development Morphological and physiological development of EMBRYOS. Embryo Development,Embryogenesis,Postimplantation Embryo Development,Preimplantation Embryo Development,Embryonic Programming,Post-implantation Embryo Development,Postnidation Embryo Development,Postnidation Embryo Development, Animal,Pre-implantation Embryo Development,Prenidation Embryo Development, Animal,Development, Embryo,Development, Embryonic,Development, Postnidation Embryo,Embryo Development, Post-implantation,Embryo Development, Postimplantation,Embryo Development, Postnidation,Embryo Development, Pre-implantation,Embryo Development, Preimplantation,Embryonic Developments,Embryonic Programmings,Post implantation Embryo Development,Pre implantation Embryo Development
D049750 Genome, Insect The genetic complement of an insect (INSECTS) as represented in its DNA. Insect Genome,Genomes, Insect,Insect Genomes
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic
D020871 RNA Stability The extent to which an RNA molecule retains its structural integrity and resists degradation by RNASE, and base-catalyzed HYDROLYSIS, under changing in vivo or in vitro conditions. RNA Decay,mRNA Decay,mRNA Transcript Degradation,RNA Degradation,RNA Instability,mRNA Degradation,mRNA Instability,mRNA Stability,Decay, RNA,Decay, mRNA,Degradation, RNA,Degradation, mRNA,Degradation, mRNA Transcript,Instability, RNA,Instability, mRNA,Stability, RNA,Stability, mRNA,Transcript Degradation, mRNA

Related Publications

Jennifer L Semotok, and J Timothy Westwood, and Aaron L Goldman, and Ramona L Cooperstock, and Howard D Lipshitz
June 1979, Experimental cell research,
Jennifer L Semotok, and J Timothy Westwood, and Aaron L Goldman, and Ramona L Cooperstock, and Howard D Lipshitz
January 2007, Genome biology,
Jennifer L Semotok, and J Timothy Westwood, and Aaron L Goldman, and Ramona L Cooperstock, and Howard D Lipshitz
January 2013, BMC molecular biology,
Jennifer L Semotok, and J Timothy Westwood, and Aaron L Goldman, and Ramona L Cooperstock, and Howard D Lipshitz
May 2014, Briefings in functional genomics,
Jennifer L Semotok, and J Timothy Westwood, and Aaron L Goldman, and Ramona L Cooperstock, and Howard D Lipshitz
November 1989, Developmental biology,
Jennifer L Semotok, and J Timothy Westwood, and Aaron L Goldman, and Ramona L Cooperstock, and Howard D Lipshitz
January 1983, The EMBO journal,
Jennifer L Semotok, and J Timothy Westwood, and Aaron L Goldman, and Ramona L Cooperstock, and Howard D Lipshitz
July 2023, eLife,
Jennifer L Semotok, and J Timothy Westwood, and Aaron L Goldman, and Ramona L Cooperstock, and Howard D Lipshitz
September 1974, Developmental biology,
Jennifer L Semotok, and J Timothy Westwood, and Aaron L Goldman, and Ramona L Cooperstock, and Howard D Lipshitz
February 1968, The Journal of experimental zoology,
Jennifer L Semotok, and J Timothy Westwood, and Aaron L Goldman, and Ramona L Cooperstock, and Howard D Lipshitz
December 2002, Developmental dynamics : an official publication of the American Association of Anatomists,
Copied contents to your clipboard!