Drosophila epigenome reorganization during oocyte differentiation and early embryogenesis. 2014

Nicola Iovino

In sexually reproducing organisms, propagation of the species relies on specialized haploid cells (gametes) produced by germ cells. During their development in the adult germline, the female and male gametes undergo a complex differentiation process that requires transcriptional regulation and chromatin reorganization. After fertilization, the gametes then go through extensive epigenetic reprogramming, which resets the cells to a totipotent state essential for the development of the embryo. Several histone modifications characterize distinct developmental stages of gamete formation and early embryonic development, but it is unknown whether these modifications have any physiological role. Furthermore, accumulating evidence suggests that environmentally induced chromatin changes can be inherited, yet the mechanisms underlying zygotic inheritance of the gamete epigenome remain unclear. This review gives a brief overview of the mechanisms of transgenerational epigenetic inheritance and examines the function of epigenetics during oogenesis and early embryogenesis with a focus on histone posttranslational modifications.

UI MeSH Term Description Entries
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D044127 Epigenesis, Genetic A genetic process by which the adult organism is realized via mechanisms that lead to the restriction in the possible fates of cells, eventually leading to their differentiated state. Mechanisms involved cause heritable changes to cells without changes to DNA sequence such as DNA METHYLATION; HISTONE modification; DNA REPLICATION TIMING; NUCLEOSOME positioning; and heterochromatization which result in selective gene expression or repression. Epigenetic Processes,Epigenetic Process,Epigenetics Processes,Genetic Epigenesis,Process, Epigenetic,Processes, Epigenetic,Processes, Epigenetics
D047108 Embryonic Development Morphological and physiological development of EMBRYOS. Embryo Development,Embryogenesis,Postimplantation Embryo Development,Preimplantation Embryo Development,Embryonic Programming,Post-implantation Embryo Development,Postnidation Embryo Development,Postnidation Embryo Development, Animal,Pre-implantation Embryo Development,Prenidation Embryo Development, Animal,Development, Embryo,Development, Embryonic,Development, Postnidation Embryo,Embryo Development, Post-implantation,Embryo Development, Postimplantation,Embryo Development, Postnidation,Embryo Development, Pre-implantation,Embryo Development, Preimplantation,Embryonic Developments,Embryonic Programmings,Post implantation Embryo Development,Pre implantation Embryo Development
D049750 Genome, Insect The genetic complement of an insect (INSECTS) as represented in its DNA. Insect Genome,Genomes, Insect,Insect Genomes

Related Publications

Nicola Iovino
September 2006, Arthropod structure & development,
Nicola Iovino
January 2008, Methods in enzymology,
Nicola Iovino
January 2020, Methods in molecular biology (Clifton, N.J.),
Nicola Iovino
May 1990, Cell differentiation and development : the official journal of the International Society of Developmental Biologists,
Nicola Iovino
March 2018, The Plant journal : for cell and molecular biology,
Nicola Iovino
June 2022, Development, growth & differentiation,
Nicola Iovino
November 1989, Developmental biology,
Copied contents to your clipboard!