[Structure and function of the eukaryotic ribosome]. 2008

Kamilla Bakowska-Zywicka, and Tomasz Twardowski
Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Noskowskiego St., 61-704 Poznan, Poland. bakowska@ibch.poznan.pl

The protein biosynthesis is a complicated process and not fully understood yet. According to smaller size and less complicated structure, understanding of prokaryotic 70S ribosomes is much more advanced. Eucaryotic 80S ribosomes are more complex and generate more difficulties in research. The morphology of 80S ribosome has been pretty well resolved and we know a lot about mechanism of functioning. Determination of the interactions between the ribosomes and the factors taking part in protein biosynthesis is still a great challenge. Dynamic changes of these interactions during particular steps of elongation cycle are quite difficult to understand. Conformational changes of the ribosome are of great functional and regulatory importance during protein biosynthesis. They are essential for the whole gene expression process. Only further research of the structure and function of the ribosome will lead us to knowledge about specificity of the mechanism of their action. In this article we present current opinions concerning structure and function of the eukaryotic ribosomes.

UI MeSH Term Description Entries
D007448 Invertebrates Animals that have no spinal column. Brachiopoda,Mesozoa,Brachiopodas,Invertebrate,Mesozoas
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D005057 Eukaryotic Cells Cells of the higher organisms, containing a true nucleus bounded by a nuclear membrane. Cell, Eukaryotic,Cells, Eukaryotic,Eukaryotic Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S

Related Publications

Kamilla Bakowska-Zywicka, and Tomasz Twardowski
May 2012, Cold Spring Harbor perspectives in biology,
Kamilla Bakowska-Zywicka, and Tomasz Twardowski
April 2002, Cell,
Kamilla Bakowska-Zywicka, and Tomasz Twardowski
November 2010, Science (New York, N.Y.),
Kamilla Bakowska-Zywicka, and Tomasz Twardowski
December 2009, Structure (London, England : 1993),
Kamilla Bakowska-Zywicka, and Tomasz Twardowski
January 2014, Annual review of biochemistry,
Kamilla Bakowska-Zywicka, and Tomasz Twardowski
September 2017, RNA biology,
Kamilla Bakowska-Zywicka, and Tomasz Twardowski
January 2015, Nature structural & molecular biology,
Kamilla Bakowska-Zywicka, and Tomasz Twardowski
January 1973, Endeavour,
Kamilla Bakowska-Zywicka, and Tomasz Twardowski
December 2011, Science (New York, N.Y.),
Kamilla Bakowska-Zywicka, and Tomasz Twardowski
March 2017, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
Copied contents to your clipboard!