Role of vasopressin V(1a) and V2 receptors for the development of secondary brain damage after traumatic brain injury in mice. 2008

Raimund Trabold, and Sandro Krieg, and Karsten Schöller, and Nikolaus Plesnila
Laboratory of Experimental Neurosurgery, Department of Neurosurgery & Institute for Surgical Research, University of Munich Medical Center-Grosshadern, Ludwig-Maximilians University, Munich, Germany.

Brain edema is still one of the most deleterious sequels of traumatic brain injury (TBI), and its pathophysiology is not sufficiently understood. The goal of the current study was to investigate the role of arginine vasopressin (AVP), also known as antidiuretic hormone (ADH), an important regulator of tissue water homeostasis, for the formation of post-traumatic brain edema, intracranial pressure (ICP), brain damage, and functional deficits following brain trauma. C57/B16 mice (n=112) were subjected to controlled cortical impact (CCI; 8m/s, 1 mm). At 3 min after trauma, animals received 500 ng of the AVP V(1a)-receptor antogonist (deamino-Pen(1), O-Me-Tyr(2), Arg(8)]-Vasopressin) or 500 ng of the AVP V2-receptor antagonist (adamantaneacetyl(1), O-Et-D-Tyr(2),Val(4), Abu(6),Arg(8,9)]-Vasopressin) by intracerebroventricular injection. After trauma, cerebral water content (24 h), ICP (24 h), contusion volume (24 h and 7 days), and functional outcome (1-7 days) were assessed (n=8 per experimental group). Post-traumatic inhibition of AVP V(1A) receptors reduced ICP by 29% (p < 0.05), brain water content by 45% (p < 0.05), and secondary contusion expansion by 37% (p < 0.05), and it significantly improved motor function 6 and 7 days after trauma (p < 0.05). Inhibition of AVP V2 receptors had no significant effect. The current results demonstrate that vasopressin V(1A) receptors are involved in the pathogenesis of brain edema formation and the subsequent development of secondary brain damage after traumatic brain injury. Accordingly, our study suggests that vasopressin V(1A) receptors may represent a novel therapeutic target for the treatment of post-traumatic brain edema and secondary brain damage.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D001929 Brain Edema Increased intracellular or extracellular fluid in brain tissue. Cytotoxic brain edema (swelling due to increased intracellular fluid) is indicative of a disturbance in cell metabolism, and is commonly associated with hypoxic or ischemic injuries (see HYPOXIA, BRAIN). An increase in extracellular fluid may be caused by increased brain capillary permeability (vasogenic edema), an osmotic gradient, local blockages in interstitial fluid pathways, or by obstruction of CSF flow (e.g., obstructive HYDROCEPHALUS). (From Childs Nerv Syst 1992 Sep; 8(6):301-6) Brain Swelling,Cerebral Edema,Cytotoxic Brain Edema,Intracranial Edema,Vasogenic Cerebral Edema,Cerebral Edema, Cytotoxic,Cerebral Edema, Vasogenic,Cytotoxic Cerebral Edema,Vasogenic Brain Edema,Brain Edema, Cytotoxic,Brain Edema, Vasogenic,Brain Swellings,Cerebral Edemas, Vasogenic,Edema, Brain,Edema, Cerebral,Edema, Cytotoxic Brain,Edema, Cytotoxic Cerebral,Edema, Intracranial,Edema, Vasogenic Brain,Edema, Vasogenic Cerebral,Swelling, Brain
D001930 Brain Injuries Acute and chronic (see also BRAIN INJURIES, CHRONIC) injuries to the brain, including the cerebral hemispheres, CEREBELLUM, and BRAIN STEM. Clinical manifestations depend on the nature of injury. Diffuse trauma to the brain is frequently associated with DIFFUSE AXONAL INJURY or COMA, POST-TRAUMATIC. Localized injuries may be associated with NEUROBEHAVIORAL MANIFESTATIONS; HEMIPARESIS, or other focal neurologic deficits. Brain Lacerations,Acute Brain Injuries,Brain Injuries, Acute,Brain Injuries, Focal,Focal Brain Injuries,Injuries, Acute Brain,Injuries, Brain,Acute Brain Injury,Brain Injury,Brain Injury, Acute,Brain Injury, Focal,Brain Laceration,Focal Brain Injury,Injuries, Focal Brain,Injury, Acute Brain,Injury, Brain,Injury, Focal Brain,Laceration, Brain,Lacerations, Brain
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001127 Arginine Vasopressin The predominant form of mammalian antidiuretic hormone. It is a nonapeptide containing an ARGININE at residue 8 and two disulfide-linked cysteines at residues of 1 and 6. Arg-vasopressin is used to treat DIABETES INSIPIDUS or to improve vasomotor tone and BLOOD PRESSURE. Argipressin,Vasopressin, Arginine,Arg-Vasopressin,Argipressin Tannate,Arg Vasopressin
D017483 Receptors, Vasopressin Specific molecular sites or proteins on or in cells to which VASOPRESSINS bind or interact in order to modify the function of the cells. Two types of vasopressin receptor exist, the V1 receptor in the vascular smooth muscle and the V2 receptor in the kidneys. The V1 receptor can be subdivided into V1a and V1b (formerly V3) receptors. Antidiuretic Hormone Receptors,Receptors, V1,Receptors, V2,V1 Receptors,V2 Receptors,Vasopressin Receptors,8-Arg-Vasopressin Receptor,Antidiuretic Hormone Receptor,Antidiuretic Hormone Receptor 1a,Antidiuretic Hormone Receptor 1b,Arginine Vasopressin Receptor,Argipressin Receptor,Argipressin Receptors,Receptor, Arginine(8)-Vasopressin,Renal-Type Arginine Vasopressin Receptor,V1 Receptor,V1a Vasopressin Receptor,V1b Vasopressin Receptor,V2 Receptor,Vascular-Hepatic Type Arginine Vasopressin Receptor,Vasopressin Receptor,Vasopressin Receptor 1,Vasopressin Type 1A Receptor,Vasopressin V1a Receptor,Vasopressin V1b Receptor,Vasopressin V2 Receptor,Vasopressin V3 Receptor,8 Arg Vasopressin Receptor,Hormone Receptor, Antidiuretic,Hormone Receptors, Antidiuretic,Receptor, Antidiuretic Hormone,Receptor, Arginine Vasopressin,Receptor, Argipressin,Receptor, V1,Receptor, V2,Receptor, Vasopressin,Receptor, Vasopressin V1b,Receptor, Vasopressin V3,Receptors, Antidiuretic Hormone,Receptors, Argipressin,Renal Type Arginine Vasopressin Receptor,V1b Receptor, Vasopressin,Vascular Hepatic Type Arginine Vasopressin Receptor,Vasopressin Receptor, V1b
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D019586 Intracranial Hypertension Increased pressure within the cranial vault. This may result from several conditions, including HYDROCEPHALUS; BRAIN EDEMA; intracranial masses; severe systemic HYPERTENSION; PSEUDOTUMOR CEREBRI; and other disorders. Elevated ICP (Intracranial Pressure),Elevated Intracranial Pressure,ICP (Intracranial Pressure) Elevation,ICP (Intracranial Pressure) Increase,Intracranial Pressure Increase,Hypertension, Intracranial,ICP, Elevated (Intracranial Pressure),Intracranial Pressure, Elevated,Pressure Increase, Intracranial,Pressure, Elevated Intracranial

Related Publications

Raimund Trabold, and Sandro Krieg, and Karsten Schöller, and Nikolaus Plesnila
January 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
Raimund Trabold, and Sandro Krieg, and Karsten Schöller, and Nikolaus Plesnila
July 2008, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
Raimund Trabold, and Sandro Krieg, and Karsten Schöller, and Nikolaus Plesnila
August 2005, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
Raimund Trabold, and Sandro Krieg, and Karsten Schöller, and Nikolaus Plesnila
February 2013, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
Raimund Trabold, and Sandro Krieg, and Karsten Schöller, and Nikolaus Plesnila
August 2013, Journal of neurotrauma,
Raimund Trabold, and Sandro Krieg, and Karsten Schöller, and Nikolaus Plesnila
August 2004, Journal of neurotrauma,
Raimund Trabold, and Sandro Krieg, and Karsten Schöller, and Nikolaus Plesnila
March 2023, Scientific reports,
Raimund Trabold, and Sandro Krieg, and Karsten Schöller, and Nikolaus Plesnila
July 2014, Neuroscience,
Raimund Trabold, and Sandro Krieg, and Karsten Schöller, and Nikolaus Plesnila
February 2020, Journal of neurotrauma,
Raimund Trabold, and Sandro Krieg, and Karsten Schöller, and Nikolaus Plesnila
August 2011, Annals of surgery,
Copied contents to your clipboard!