Role of arginine vasopressin V1 and V2 receptors for brain damage after transient focal cerebral ischemia. 2005

Abedin Vakili, and Hiroharu Kataoka, and Nikolaus Plesnila
Department of Physiology, Shiraz Medical School, University of Medical Sciences, Shiraz, Islamic Republic of Iran.

Brain edema formation is one of the most important mechanisms responsible for brain damage after ischemic stroke. Despite considerable efforts, no specific therapy is available yet. Arginine vasopressin (AVP) regulates cerebral water homeostasis and has been involved in brain edema formation. In the current study, we investigated the role of AVP V1 and V2 receptors on brain damage, brain edema formation, and functional outcome after transient focal cerebral ischemia, a condition comparable with that of stroke patients undergoing thrombolysis. C57/BL6 mice were subjected to 60-min middle cerebral artery occlusion (MCAO) followed by 23 h of reperfusion. Five minutes after MCAO, 100 or 500 ng of [deamino-Pen(1), O-Me-Tyr(2), Arg(8)]-vasopressin (AVP V1 receptor antagonist) or [adamantaneacetyl(1), O-Et-D-Tyr(2), Val(4), Abu(6), Arg(8,9)]-vasopressin (AVP V2 receptor antagonist) were injected into the left ventricle. Inhibition of AVP V1 receptors reduced infarct volume in a dose-dependent manner by 54% and 70% (to 29+/-13 and 19+/-10 mm3 versus 63+/-17 mm3 in controls; P<0.001), brain edema formation by 67% (to 80.4%+/-1.0% versus 82.7%+/-1.2% in controls; P<0.001), blood-brain barrier disruption by 75% (P<0.001), and functional deficits 24 h after ischemia, while V2 receptor inhibition had no effect. The current findings indicate that AVP V1 but not V2 receptors are involved in the pathophysiology of secondary brain damage after focal cerebral ischemia. Although further studies are needed to clarify the mechanisms of neuroprotection, AVP V1 receptors seem to be promising targets for the treatment of ischemic stroke.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009422 Nervous System Diseases Diseases of the central and peripheral nervous system. This includes disorders of the brain, spinal cord, cranial nerves, peripheral nerves, nerve roots, autonomic nervous system, neuromuscular junction, and muscle. Neurologic Disorders,Nervous System Disorders,Neurological Disorders,Disease, Nervous System,Diseases, Nervous System,Disorder, Nervous System,Disorder, Neurologic,Disorder, Neurological,Disorders, Nervous System,Disorders, Neurologic,Disorders, Neurological,Nervous System Disease,Nervous System Disorder,Neurologic Disorder,Neurological Disorder
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D001834 Body Water Fluids composed mainly of water found within the body. Water, Body
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001929 Brain Edema Increased intracellular or extracellular fluid in brain tissue. Cytotoxic brain edema (swelling due to increased intracellular fluid) is indicative of a disturbance in cell metabolism, and is commonly associated with hypoxic or ischemic injuries (see HYPOXIA, BRAIN). An increase in extracellular fluid may be caused by increased brain capillary permeability (vasogenic edema), an osmotic gradient, local blockages in interstitial fluid pathways, or by obstruction of CSF flow (e.g., obstructive HYDROCEPHALUS). (From Childs Nerv Syst 1992 Sep; 8(6):301-6) Brain Swelling,Cerebral Edema,Cytotoxic Brain Edema,Intracranial Edema,Vasogenic Cerebral Edema,Cerebral Edema, Cytotoxic,Cerebral Edema, Vasogenic,Cytotoxic Cerebral Edema,Vasogenic Brain Edema,Brain Edema, Cytotoxic,Brain Edema, Vasogenic,Brain Swellings,Cerebral Edemas, Vasogenic,Edema, Brain,Edema, Cerebral,Edema, Cytotoxic Brain,Edema, Cytotoxic Cerebral,Edema, Intracranial,Edema, Vasogenic Brain,Edema, Vasogenic Cerebral,Swelling, Brain
D002544 Cerebral Infarction The formation of an area of NECROSIS in the CEREBRUM caused by an insufficiency of arterial or venous blood flow. Infarcts of the cerebrum are generally classified by hemisphere (i.e., left vs. right), lobe (e.g., frontal lobe infarction), arterial distribution (e.g., INFARCTION, ANTERIOR CEREBRAL ARTERY), and etiology (e.g., embolic infarction). Anterior Choroidal Artery Infarction,Cerebral Infarct,Infarction, Cerebral,Posterior Choroidal Artery Infarction,Subcortical Infarction,Cerebral Infarction, Left Hemisphere,Cerebral Infarction, Right Hemisphere,Cerebral, Left Hemisphere, Infarction,Cerebral, Right Hemisphere, Infarction,Infarction, Cerebral, Left Hemisphere,Infarction, Cerebral, Right Hemisphere,Infarction, Left Hemisphere, Cerebral,Infarction, Right Hemisphere, Cerebral,Left Hemisphere, Cerebral Infarction,Left Hemisphere, Infarction, Cerebral,Right Hemisphere, Cerebral Infarction,Right Hemisphere, Infarction, Cerebral,Cerebral Infarctions,Cerebral Infarcts,Infarct, Cerebral,Infarction, Subcortical,Infarctions, Cerebral,Infarctions, Subcortical,Infarcts, Cerebral,Subcortical Infarctions

Related Publications

Abedin Vakili, and Hiroharu Kataoka, and Nikolaus Plesnila
February 1993, The Journal of endocrinology,
Abedin Vakili, and Hiroharu Kataoka, and Nikolaus Plesnila
February 1994, The American journal of physiology,
Abedin Vakili, and Hiroharu Kataoka, and Nikolaus Plesnila
August 1988, The American journal of physiology,
Abedin Vakili, and Hiroharu Kataoka, and Nikolaus Plesnila
June 2009, Journal of molecular neuroscience : MN,
Abedin Vakili, and Hiroharu Kataoka, and Nikolaus Plesnila
August 2005, Stroke,
Abedin Vakili, and Hiroharu Kataoka, and Nikolaus Plesnila
January 2007, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
Abedin Vakili, and Hiroharu Kataoka, and Nikolaus Plesnila
February 2004, American journal of physiology. Renal physiology,
Abedin Vakili, and Hiroharu Kataoka, and Nikolaus Plesnila
January 1991, Experientia,
Abedin Vakili, and Hiroharu Kataoka, and Nikolaus Plesnila
December 2008, Journal of neurotrauma,
Abedin Vakili, and Hiroharu Kataoka, and Nikolaus Plesnila
April 2017, Journal of neurotrauma,
Copied contents to your clipboard!