Antidiuretic hormone modulates membrane phosphoproteins in toad urinary bladder and retrieved water channel containing apical membrane vesicles. 1991

H W Harris
Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115.

Antidiuretic hormone (ADH) dramatically increases the water permeability of toad urinary bladder by insertion of unique highly selective water channels into the apical membranes of granular cells. Before ADH stimulation, water channels are stored in high concentrations in the limiting membranes of large cytoplasmic vesicles called aggrephores. ADH stimulation causes aggrephore fusion with the granular cell apical membrane and increases water permeability. Transepithelial osmotic water flow causes a rapid attenuation of the ADH-elicited increase in water permeability through a process called flux inhibition. Flux inhibition is due to retrieval of ADH water channels by apical membrane endocytosis. When phosphoproteins of intact bladders are labeled with (32P)orthophosphate, the 32P content of 34-, 28-, and 17-kDa proteins is increased by ADH stimulation. When flux inhibition occurs, the 32P-labelling of a 15.5-kDa protein is reduced to approximately one half its original value (Konieczkowski M, Rudolph SA, J Pharmacol Exp Ther 1985;234:515). These observations have been confirmed, and these studies have been extended, by using a combination of subcellular fractionation and membrane protein chemistry techniques. All four of these phosphoproteins are present in membrane fractions of granular cells. Analysis of membrane proteins by a combination of Triton X-114 partitioning and an alkaline stripping technique reveals that the 28- and 17-kDa species are integral membrane proteins of unknown function. In contrast, the 32P-labeled 15.5-kDa protein is a peripheral membrane protein. It is attached to the cytoplasmic (outer) surface of highly water-permeable vesicles retrieved during flux inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D010750 Phosphoproteins Phosphoprotein
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D001743 Urinary Bladder A musculomembranous sac along the URINARY TRACT. URINE flows from the KIDNEYS into the bladder via the ureters (URETER), and is held there until URINATION. Bladder,Bladder Detrusor Muscle,Detrusor Urinae,Bladder Detrusor Muscles,Bladder, Urinary,Detrusor Muscle, Bladder,Detrusor Muscles, Bladder
D002024 Bufo marinus A species of the true toads, Bufonidae, becoming fairly common in the southern United States and almost pantropical. The secretions from the skin glands of this species are very toxic to animals. Rhinella marina,Toad, Giant,Toad, Marine,Giant Toad,Giant Toads,Marine Toad,Marine Toads,Toads, Giant,Toads, Marine
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014667 Vasopressins Antidiuretic hormones released by the NEUROHYPOPHYSIS of all vertebrates (structure varies with species) to regulate water balance and OSMOLARITY. In general, vasopressin is a nonapeptide consisting of a six-amino-acid ring with a cysteine 1 to cysteine 6 disulfide bridge or an octapeptide containing a CYSTINE. All mammals have arginine vasopressin except the pig with a lysine at position 8. Vasopressin, a vasoconstrictor, acts on the KIDNEY COLLECTING DUCTS to increase water reabsorption, increase blood volume and blood pressure. Antidiuretic Hormone,Antidiuretic Hormones,beta-Hypophamine,Pitressin,Vasopressin,Vasopressin (USP),Hormone, Antidiuretic,beta Hypophamine

Related Publications

H W Harris
January 1975, The Journal of membrane biology,
H W Harris
January 1982, The Journal of membrane biology,
H W Harris
January 1986, The Journal of membrane biology,
Copied contents to your clipboard!