Cytosolic calcium staircase in ventricular myocytes isolated from guinea pigs and rats. 1991

Y Hattori, and J Toyama, and I Kodama
Department of Circulation and Respiration, Nagoya University, Japan.

OBJECTIVE The aim was to study intracellular calcium dynamics underlying positive or negative tension staircase of mammalian hearts. METHODS Changes in cytosolic calcium concentration [( Ca2+]i) in single ventricular myocytes were investigated using a Ca2+ indicator, fura-2. Beat to beat alterations in fura-2 fluorescence and cell edge movement on resumption of stimulation were recorded on video tape, and analysed by a computer based image processing system. METHODS Single ventricular myocytes were enzymatically isolated from the hearts of 30 adult guinea pigs and 25 adult rats. RESULTS In guinea pig ventricular myocytes, the positive contractile staircase was associated with ascending staircases of both peak systolic and end diastolic [Ca2+]i because of a cumulative increase in diastolic [Ca2+]i. In rat ventricular myocytes, the negative contractile staircase was accompanied by a descending staircase of peak systolic [Ca2+]i, while end diastolic [Ca2+]i level was unchanged due to the rapid decay of [Ca2+]i transients. Ryanodine (10 microM) reversed the mode of [Ca2+]i and contractile staircases from negative to positive in rat myocytes, whereas it caused minimal alteration in guinea pig myocytes. CONCLUSIONS Tension staircase of mammalian hearts depends on diastolic Ca2+ level as well as Ca2+ handling by the sarcoplasmic reticulum. The positive staircase may require progressive increase in diastolic [Ca2+]i, while the negative staircase may be mediated by depletion of activator Ca2+ in the sarcoplasmic reticulum.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Y Hattori, and J Toyama, and I Kodama
August 1994, Shock (Augusta, Ga.),
Y Hattori, and J Toyama, and I Kodama
November 1997, The American journal of physiology,
Y Hattori, and J Toyama, and I Kodama
December 1993, The American journal of physiology,
Y Hattori, and J Toyama, and I Kodama
October 1993, The Journal of physiology,
Y Hattori, and J Toyama, and I Kodama
February 1994, The Journal of physiology,
Y Hattori, and J Toyama, and I Kodama
July 1997, Experimental physiology,
Y Hattori, and J Toyama, and I Kodama
August 1996, European journal of pharmacology,
Y Hattori, and J Toyama, and I Kodama
December 1991, Cell structure and function,
Y Hattori, and J Toyama, and I Kodama
December 1984, Circulation research,
Copied contents to your clipboard!