Synaptic organization of the olfactory bulb based on chemical coding of neurons. 2008

Kazunori Toida
Department of Anatomy and Cell Biology, Institute of Health Biosciences, University of Tokushima Graduate School, Kuramoto, Tokushima, Japan. toida@med.kawasaki-m.ac.jp

Olfaction is one of the chemical senses in both vertebrate and invertebrate animals essential for a variety of social behaviors. Recent molecular biological and physiological studies using optical recording have indicated elaborate mechanisms in the main olfactory bulb for processing input from olfactory receptor neurons and control of output to higher centers in the brain. The current challenge is to identify a structural basis for understanding such elaborate molecular and functional organization. Immunocytochemistry and other advanced technologies have enabled us to label bulbar neurons selectively, and they have shown that the olfactory bulb has much greater heterogeneity in chemical and structural neuronal organization and in synaptic connectivity than previously believed. This review describes the structural aspects of the main olfactory bulb of rats and summarizes the findings for its synaptic organization based on chemical coding of neurons. Current uncertainties and issues that need to be clarified in the future are also discussed.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D002628 Chemoreceptor Cells Cells specialized to detect chemical substances and relay that information centrally in the nervous system. Chemoreceptor cells may monitor external stimuli, as in TASTE and OLFACTION, or internal stimuli, such as the concentrations of OXYGEN and CARBON DIOXIDE in the blood. Chemoreceptive Cells,Cell, Chemoreceptive,Cell, Chemoreceptor,Cells, Chemoreceptive,Cells, Chemoreceptor,Chemoreceptive Cell,Chemoreceptor Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018034 Olfactory Receptor Neurons Neurons in the OLFACTORY EPITHELIUM with proteins (RECEPTORS, ODORANT) that bind, and thus detect, odorants. These neurons send their DENDRITES to the surface of the epithelium with the odorant receptors residing in the apical non-motile cilia. Their unmyelinated AXONS synapse in the OLFACTORY BULB of the BRAIN. Neurons, Olfactory Receptor,Olfactory Receptor Cells,Olfactory Receptor Neuron,Olfactory Sensory Cells,Olfactory Sensory Cilia,Olfactory Sensory Neurons,Cell, Olfactory Receptor,Cell, Olfactory Sensory,Cells, Olfactory Receptor,Cells, Olfactory Sensory,Cilia, Olfactory Sensory,Cilias, Olfactory Sensory,Neuron, Olfactory Receptor,Neuron, Olfactory Sensory,Neurons, Olfactory Sensory,Olfactory Receptor Cell,Olfactory Sensory Cell,Olfactory Sensory Cilias,Olfactory Sensory Neuron,Receptor Cell, Olfactory,Receptor Cells, Olfactory,Receptor Neuron, Olfactory,Receptor Neurons, Olfactory,Sensory Cell, Olfactory,Sensory Cells, Olfactory,Sensory Cilia, Olfactory,Sensory Cilias, Olfactory,Sensory Neuron, Olfactory,Sensory Neurons, Olfactory

Related Publications

Kazunori Toida
October 1972, Physiological reviews,
Kazunori Toida
January 1982, Journal de physiologie,
Kazunori Toida
January 1999, Journal of neurophysiology,
Kazunori Toida
January 1987, Progress in neurobiology,
Kazunori Toida
April 2003, Brain research. Brain research reviews,
Kazunori Toida
March 2007, Anatomical record (Hoboken, N.J. : 2007),
Copied contents to your clipboard!