Hepatitis C virus nonstructural 4B protein modulates sterol regulatory element-binding protein signaling via the AKT pathway. 2009

Chul-Yong Park, and Hyun-Jeong Jun, and Takaji Wakita, and Jae Hun Cheong, and Soon B Hwang
National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang 431-060, Korea.

Hepatitis C virus (HCV) infection is often associated with hepatic steatosis and yet the molecular mechanisms of HCV-associated steatosis are poorly understood. Because sterol regulatory element-binding proteins (SREBPs) are the major transcriptional factors in lipogenic gene expression including fatty acid synthase (FAS), we examined the effects of HCV nonstructural proteins on the signaling pathways of SREBP. In this study, we demonstrated that HCV nonstructural 4B (NS4B) protein increased the transcriptional activities of SREBPs. We also showed that HCV NS4B enhanced the protein expression levels of SREBPs and FAS. This was further confirmed in the context of viral RNA replication and HCV infection. The up-regulation of both SREBP and FAS by NS4B protein required phosphatidylinositol 3-kinase activity. We also demonstrated that NS4B protein induced a lipid accumulation in hepatoma cells. In addition, NS4B protein synergistically elevated the transcriptional activity of HCV core-mediated SREBP-1. These results strongly suggest that NS4B may play an important role in HCV-associated liver pathogenesis by modulating the SREBP signaling pathway.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015533 Transcriptional Activation Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes. Gene Activation,Genetic Induction,Transactivation,Induction, Genetic,Trans-Activation, Genetic,Transcription Activation,Activation, Gene,Activation, Transcription,Activation, Transcriptional,Genetic Trans-Activation,Trans Activation, Genetic
D016174 Hepacivirus A genus of FLAVIVIRIDAE causing parenterally-transmitted HEPATITIS C which is associated with transfusions and drug abuse. Hepatitis C virus is the type species. Hepatitis C virus,Hepatitis C-Like Viruses,Hepaciviruses,Hepatitis C Like Viruses,Hepatitis C viruses,Hepatitis C-Like Virus
D017361 Viral Nonstructural Proteins Proteins encoded by a VIRAL GENOME that are not structural components of VIRUS PARTICLES. Some of these proteins may play roles within the infected cell during VIRUS REPLICATION or act in regulation of virus replication or VIRUS ASSEMBLY. Nonstructural Proteins, Viral,NS Proteins, Viral,Viral NS Proteins,Viral Non-Structural Proteins,Viral Nonstructural Protein,Viral Nonstructural Proteins NS1,Viral Nonstructural Proteins NS2,Nonstructural Protein, Viral,Viral Non Structural Proteins

Related Publications

Chul-Yong Park, and Hyun-Jeong Jun, and Takaji Wakita, and Jae Hun Cheong, and Soon B Hwang
March 2023, Archives of virology,
Chul-Yong Park, and Hyun-Jeong Jun, and Takaji Wakita, and Jae Hun Cheong, and Soon B Hwang
November 2010, Biochemical and biophysical research communications,
Chul-Yong Park, and Hyun-Jeong Jun, and Takaji Wakita, and Jae Hun Cheong, and Soon B Hwang
June 2010, The Journal of general virology,
Chul-Yong Park, and Hyun-Jeong Jun, and Takaji Wakita, and Jae Hun Cheong, and Soon B Hwang
August 2016, Journal of virology,
Chul-Yong Park, and Hyun-Jeong Jun, and Takaji Wakita, and Jae Hun Cheong, and Soon B Hwang
May 2017, BMC microbiology,
Chul-Yong Park, and Hyun-Jeong Jun, and Takaji Wakita, and Jae Hun Cheong, and Soon B Hwang
July 2013, Journal of virology,
Chul-Yong Park, and Hyun-Jeong Jun, and Takaji Wakita, and Jae Hun Cheong, and Soon B Hwang
March 2010, Reviews in medical virology,
Chul-Yong Park, and Hyun-Jeong Jun, and Takaji Wakita, and Jae Hun Cheong, and Soon B Hwang
May 2001, Virology,
Chul-Yong Park, and Hyun-Jeong Jun, and Takaji Wakita, and Jae Hun Cheong, and Soon B Hwang
January 2020, Frontiers in oncology,
Chul-Yong Park, and Hyun-Jeong Jun, and Takaji Wakita, and Jae Hun Cheong, and Soon B Hwang
February 2001, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!