Pharmacological characterization of 2-methoxy-N-propylnorapomorphine's interactions with D2 and D3 dopamine receptors. 2009

Mette Skinbjerg, and Yoon Namkung, and Christer Halldin, and Robert B Innis, and David R Sibley
Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892-9405, USA.

Dopaminergic signaling pathways have been extensively investigated using PET imaging, primarily with antagonist radioligands of D(2) and D(3) dopamine receptors (DARs). Recently, agonist radioligands of D(2)/D(3) DARs have begun to be developed and employed. One such agonist is (R)-2-(11)CH(3)O-N-n-propylnorapomorphine (MNPA). Here, we perform a pharmacological characterization of MNPA using recombinant D(2) and D(3) DARs expressed in HEK293 cells. MNPA was found to robustly inhibit forskolin-stimulated cAMP accumulation to the same extent as dopamine in D(2) or D(3) DAR-transfected cells, indicating that it is a full agonist at both receptors. MNPA is approximately 50-fold more potent than dopamine at the D(2) DAR, but equally potent as dopamine at the D(3) DAR. MNPA competition binding curves in membrane preparations expressing D(2) DARs revealed two binding states of high and low-affinity. In the presence of GTP, only one binding state of low affinity was observed. Direct saturation binding assays using [(3)H]MNPA revealed similar results as with the competition experiments leading to the conclusion that MNPA binds to the D(2) DAR in an agonist-specific fashion. In contrast to membrane preparations, using intact cell binding assays, only one site of low affinity was observed for MNPA and other agonists binding to the D(2) DAR. MNPA was also found to induce D(2) DAR internalization to an even greater extent than dopamine as determined using both cell surface receptor binding assays and confocal fluorescence microscopy. Taken together, our data indicate that the PET tracer, MNPA, is a full and potent agonist at both D(2) and D(3) receptors.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001058 Apomorphine A derivative of morphine that is a dopamine D2 agonist. It is a powerful emetic and has been used for that effect in acute poisoning. It has also been used in the diagnosis and treatment of parkinsonism, but its adverse effects limit its use. Apokinon,Apomorphin-Teclapharm,Apomorphine Chloride,Apomorphine Hydrochloride,Apomorphine Hydrochloride Anhydrous,Apomorphine Hydrochloride, Anhydrous,Apomorphine Hydrochloride, Hemihydrate,Britaject,Apomorphin Teclapharm
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D017448 Receptors, Dopamine D2 A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D2-class receptor genes contain INTRONS, and the receptors inhibit ADENYLYL CYCLASES. Dopamine D2 Receptors,Dopamine-D2 Receptor,D2 Receptors, Dopamine,Dopamine D2 Receptor,Receptor, Dopamine-D2
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D049268 Positron-Emission Tomography An imaging technique using compounds labelled with short-lived positron-emitting radionuclides (such as carbon-11, nitrogen-13, oxygen-15 and fluorine-18) to measure cell metabolism. It has been useful in study of soft tissues such as CANCER; CARDIOVASCULAR SYSTEM; and brain. SINGLE-PHOTON EMISSION-COMPUTED TOMOGRAPHY is closely related to positron emission tomography, but uses isotopes with longer half-lives and resolution is lower. PET Imaging,PET Scan,Positron-Emission Tomography Imaging,Tomography, Positron-Emission,Imaging, PET,Imaging, Positron-Emission Tomography,PET Imagings,PET Scans,Positron Emission Tomography,Positron Emission Tomography Imaging,Positron-Emission Tomography Imagings,Scan, PET,Tomography Imaging, Positron-Emission,Tomography, Positron Emission

Related Publications

Mette Skinbjerg, and Yoon Namkung, and Christer Halldin, and Robert B Innis, and David R Sibley
January 2008, Journal of neural transmission (Vienna, Austria : 1996),
Mette Skinbjerg, and Yoon Namkung, and Christer Halldin, and Robert B Innis, and David R Sibley
March 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Mette Skinbjerg, and Yoon Namkung, and Christer Halldin, and Robert B Innis, and David R Sibley
August 1994, The Journal of pharmacology and experimental therapeutics,
Mette Skinbjerg, and Yoon Namkung, and Christer Halldin, and Robert B Innis, and David R Sibley
January 1994, The Journal of pharmacology and experimental therapeutics,
Mette Skinbjerg, and Yoon Namkung, and Christer Halldin, and Robert B Innis, and David R Sibley
January 1994, Molecular pharmacology,
Mette Skinbjerg, and Yoon Namkung, and Christer Halldin, and Robert B Innis, and David R Sibley
December 2020, Scientific reports,
Mette Skinbjerg, and Yoon Namkung, and Christer Halldin, and Robert B Innis, and David R Sibley
February 2003, Journal of receptor and signal transduction research,
Mette Skinbjerg, and Yoon Namkung, and Christer Halldin, and Robert B Innis, and David R Sibley
February 2002, Cellular and molecular neurobiology,
Mette Skinbjerg, and Yoon Namkung, and Christer Halldin, and Robert B Innis, and David R Sibley
December 1996, Biological psychiatry,
Mette Skinbjerg, and Yoon Namkung, and Christer Halldin, and Robert B Innis, and David R Sibley
February 2010, Current opinion in pharmacology,
Copied contents to your clipboard!