Significance of pulmonary vagal afferents for respiratory muscle activity in the cat. 2008

W Marek, and K Muckenhoff, and N R Prabhakar
Department of Physiology, Ruhr-University Bochum, Germany. Wolfgang.Marek@ruhr-uni-bochum.de

The influence of vagal stretch receptor afferents on respiratory motor-output and respiratory changes in esophageal pressure (DeltaP(es)) was studied in anaesthetized cats. Tracheal occlusions and lung inflations were performed during hyperoxic normocapnia, during electrical stimulation of one carotid sinus nerve (CSN) or the intracranial medullary chemosensitivity (MCS), during hypercapnia or the combination of CSN and hypercapnia. Tracheal occlusions during inspiration led to increased and prolonged inspiratory muscle (IM) activity. Moderate hyperinflation in inspiration decreased and shortened inspiratory motor output. Changes in esophageal pressure and in amplitude and discharge duration of IM are largely proportional (0.84>r<0.98) to lung volume above normal endexpiratory volume (FRC). The effects are described as the Hering-Breuer inspiration inhibitory reflex (HB-IIR). Tracheal occlusion or hyperinflation in end-inspiratory position not only prolonged expiration but also activated expiratory muscles (EM). The effects linearly (0.86>r<0.98) increased with elevation of lung volume. We refer to these effects as the Hering-Breuer expiration facilitatory reflex (HB-EFR). Severe hyperinflation or rapid inflation of the lungs during inspiration, however, led to an inspiratory facilitation with increased IM activity. During concomitant chemoreflex activation, CSN or MCS stimulation, respiratory hypercapnia, or the combination of both, the extent of the above described responses of IM and EM activity were significantly (0.05>p<0.0002) enlarged. The changes in the discharge period of IM and EM following lung inflation were smaller in the presence of the increased chemical respiratory drive (0.01>p<0.005). The relative changes in EM responses to lung inflations during increased respiratory drive were greater than those of IM. Bilateral vagotomy abolished the respiratory responses to tracheal occlusion and hyperinflation of the lungs. The results of the present investigation show that aside from the well-known inhibition of inspiration, vagal slowly adapting lung stretch receptors facilitate expiration. The sensitivity of the lung reflexes is enhanced with increasing respiratory drive. The HB-inspiration inhibitory reflex limits the depth of lung inflation, whereas the HB-expiration facilitatory reflex promotes an effective lung deflation. Both reflex mechanisms, the inspiratory and expiratory one, are present in eupnoeic breathing, but play an important role during increased chemoreflex drive and obstruction of expiration, e.g., with increased external airway resistance.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008176 Lung Volume Measurements Measurement of the amount of air that the lungs may contain at various points in the respiratory cycle. Lung Capacities,Lung Volumes,Capacity, Lung,Lung Capacity,Lung Volume,Lung Volume Measurement,Measurement, Lung Volume,Volume, Lung
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D012132 Respiratory Muscles These include the muscles of the DIAPHRAGM and the INTERCOSTAL MUSCLES. Ventilatory Muscles,Respiratory Muscle,Muscle, Respiratory,Muscle, Ventilatory,Muscles, Respiratory,Muscles, Ventilatory,Ventilatory Muscle
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002346 Carotid Sinus The dilated portion of the common carotid artery at its bifurcation into external and internal carotids. It contains baroreceptors which, when stimulated, cause slowing of the heart, vasodilatation, and a fall in blood pressure. Sinus, Carotid
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004548 Elasticity Resistance and recovery from distortion of shape.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

W Marek, and K Muckenhoff, and N R Prabhakar
January 1993, Journal of applied physiology (Bethesda, Md. : 1985),
W Marek, and K Muckenhoff, and N R Prabhakar
January 1990, The Japanese journal of physiology,
W Marek, and K Muckenhoff, and N R Prabhakar
June 1990, Journal of the autonomic nervous system,
W Marek, and K Muckenhoff, and N R Prabhakar
June 1997, Ceskoslovenska fysiologie,
W Marek, and K Muckenhoff, and N R Prabhakar
March 1992, Respiration physiology,
W Marek, and K Muckenhoff, and N R Prabhakar
September 1976, Journal of applied physiology,
W Marek, and K Muckenhoff, and N R Prabhakar
June 1977, Brain research,
W Marek, and K Muckenhoff, and N R Prabhakar
April 1961, The American journal of physiology,
W Marek, and K Muckenhoff, and N R Prabhakar
September 1976, Respiration physiology,
W Marek, and K Muckenhoff, and N R Prabhakar
July 1981, Quarterly journal of experimental physiology (Cambridge, England),
Copied contents to your clipboard!