Augmentation of muscle nociceptive respiratory reflex facilitation by vagal afferents. 1990

D Simbulan, and E Tadaki, and Y Kozaki, and K Eguchi, and T Kumazawa
Department of Nervous and Sensory Functions, Nagoya University, Japan.

Vagal influence on the facilitation of phrenic neural activity during respiratory phase-locked, gastrocnemius muscle nerve nociceptive electrical stimulation was examined in anesthetized, glomectomized, paralyzed, and artificially ventilated cats. (1) In the vagi-intact state, respiratory reflex facilitation was characterized by a sharp rise in peak amplitude, maximum rate of rise or slope, and mean rate of rise of integrated phrenic nerve activity. This was greater during inspiratory phase-locked (T1-locked) muscle nerve electrical stimulation than during expiratory phase-locked (TE-locked) muscle nerve electrical stimulation. "Evoked post-inspiratory phrenic activity" during the early expiratory phase was also observed during TE-locked muscle nerve electrical stimulation. (2) Bilateral vagotomy significantly attenuated the respiratory facilitation during both T1- and TE-locked muscle nerve electrical stimulation. In particular, the "evoked post-inspiratory phrenic activity" during TE-locked muscle nerve electrical stimulation was also attenuated or almost completely abolished. (3) Conditioning electrical stimulation of the vagus nerve revealed facilitatory reflexes which co-exist with inspiratory inhibitory reflexes. (4) The "evoked post-inspiratory phrenic activity" during TE-locked muscle nerve electrical stimulation, which was attenuated or abolished after vagotomy, was restored after vagal T1-locked conditioning stimuli combined with TE-locked muscle nerve electrical stimulation. The results suggest that vagal facilitatory reflexes augment the respiratory reflex facilitation during muscle nociceptive stimulation.

UI MeSH Term Description Entries
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D012132 Respiratory Muscles These include the muscles of the DIAPHRAGM and the INTERCOSTAL MUSCLES. Ventilatory Muscles,Respiratory Muscle,Muscle, Respiratory,Muscle, Ventilatory,Muscles, Respiratory,Muscles, Ventilatory,Ventilatory Muscle
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D Simbulan, and E Tadaki, and Y Kozaki, and K Eguchi, and T Kumazawa
April 1973, Acta physiologica Scandinavica,
D Simbulan, and E Tadaki, and Y Kozaki, and K Eguchi, and T Kumazawa
September 1968, Experientia,
D Simbulan, and E Tadaki, and Y Kozaki, and K Eguchi, and T Kumazawa
April 1983, Archives italiennes de biologie,
D Simbulan, and E Tadaki, and Y Kozaki, and K Eguchi, and T Kumazawa
July 1981, Quarterly journal of experimental physiology (Cambridge, England),
D Simbulan, and E Tadaki, and Y Kozaki, and K Eguchi, and T Kumazawa
June 1976, Brain research,
D Simbulan, and E Tadaki, and Y Kozaki, and K Eguchi, and T Kumazawa
August 1977, The American journal of physiology,
D Simbulan, and E Tadaki, and Y Kozaki, and K Eguchi, and T Kumazawa
July 1988, Canadian journal of physiology and pharmacology,
D Simbulan, and E Tadaki, and Y Kozaki, and K Eguchi, and T Kumazawa
December 2008, Journal of physiology and pharmacology : an official journal of the Polish Physiological Society,
D Simbulan, and E Tadaki, and Y Kozaki, and K Eguchi, and T Kumazawa
June 1988, Hypertension (Dallas, Tex. : 1979),
D Simbulan, and E Tadaki, and Y Kozaki, and K Eguchi, and T Kumazawa
March 1993, Journal of the autonomic nervous system,
Copied contents to your clipboard!