Proliferation and differentiation of glial fibrillary acidic protein-immunoreactive glial cells in organotypic slice cultures of rat hippocampus. 1991

J A del Rio, and B Heimrich, and E Soriano, and H Schwegler, and M Frotscher
Institute of Anatomy, University of Freiburg, F.R.G.

The present paper deals with the proliferation and differentiation of glial cells in organotypic slice cultures of the rat hippocampal formation. Transverse slices of hippocampus of newborn to five-day-old rats were cultivated using the roller tube technique. To study the development of glial cells under these conditions, the slice cultures were processed for immunostaining employing antibodies against the glial fibrillary acidic protein. The proliferation of glial cells was studied in double-labeling experiments employing glial fibrillary acidic protein-immunostaining and the bromodeoxyuridine technique. The three-dimensional glial scaffold in the cultures was analysed in semithin and ultrathin cross-sections through the slice cultures after varying periods following explanation. Our results can be summarized as follows: 1. At all intervals after explanation of the slices there are numerous glial fibrillary acidic protein-positive cells with morphological characteristics of astrocytes. 2. With some modifications, the differentiation of astrocytes and their processes follows similar rules as observed in the hippocampus in vivo. A radial glial scaffold is also formed in the cultures. However, in cultures, a regular pattern of radial fibers is more obvious in the hippocampus proper than in the dentate gyrus. This glial scaffold persists after 20 days in vitro whereas it is known to disappear after the first postnatal week in vivo. 3. Bromodeoxyuridine-positive nuclei of glial cells were found at all time periods after explanation. After short incubation periods, they were most frequent in the "ventricular" zones of the cultures. Following longer incubation periods after bromodeoxyuridine administration, proliferating cells were found throughout the cultures, covering and underlying the cultured tissue. A rim of laterally migrating astrocytes completely surrounds the cultures. Our results demonstrate that glial cells proliferate and differentiate under the present culture conditions. After three weeks of incubation the whole slice culture is surrounded by a glial cover which may play an important role for the survival and differentiation of the cultured hippocampal neurons.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D005904 Glial Fibrillary Acidic Protein An intermediate filament protein found only in glial cells or cells of glial origin. MW 51,000. Glial Intermediate Filament Protein,Astroprotein,GFA-Protein,Glial Fibrillary Acid Protein,GFA Protein
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D046508 Culture Techniques Methods of maintaining or growing biological materials in controlled laboratory conditions. These include the cultures of CELLS; TISSUES; organs; or embryo in vitro. Both animal and plant tissues may be cultured by a variety of methods. Cultures may derive from normal or abnormal tissues, and consist of a single cell type or mixed cell types. Culture Technique,Technique, Culture,Techniques, Culture

Related Publications

J A del Rio, and B Heimrich, and E Soriano, and H Schwegler, and M Frotscher
March 2002, Mechanisms of ageing and development,
J A del Rio, and B Heimrich, and E Soriano, and H Schwegler, and M Frotscher
March 1982, Brain research,
J A del Rio, and B Heimrich, and E Soriano, and H Schwegler, and M Frotscher
September 1991, Brain research,
J A del Rio, and B Heimrich, and E Soriano, and H Schwegler, and M Frotscher
February 2005, Journal of neuroscience research,
J A del Rio, and B Heimrich, and E Soriano, and H Schwegler, and M Frotscher
July 2015, Acta histochemica,
J A del Rio, and B Heimrich, and E Soriano, and H Schwegler, and M Frotscher
January 1984, Cell and tissue research,
J A del Rio, and B Heimrich, and E Soriano, and H Schwegler, and M Frotscher
September 2004, Experimental eye research,
J A del Rio, and B Heimrich, and E Soriano, and H Schwegler, and M Frotscher
January 1986, Acta histochemica,
J A del Rio, and B Heimrich, and E Soriano, and H Schwegler, and M Frotscher
January 1989, Experimental brain research,
J A del Rio, and B Heimrich, and E Soriano, and H Schwegler, and M Frotscher
May 1999, Mechanisms of ageing and development,
Copied contents to your clipboard!