Selection of non-aggregating VH binders from synthetic VH phage-display libraries. 2009

Mehdi Arbabi-Ghahroudi, and Roger MacKenzie, and Jamshid Tanha
National Research Council of Canada, Institute for Biological Sciences, Ottawa, Ontario, Canada.

The particular interest in VH antibody fragments stems from the fact that they can rival their "naturally occurring" single-domain antibody (sdAb) counterparts (camelid VHHs and shark VNARs) with regard to such desirable characteristics as stability, solubility, expression, and ability to penetrate cryptic epitopes and outperform them in terms of less immunogenicity, a much valued property in human immunotherapy applications. However, human VHs are typically prone to aggregation. Various approaches for developing non-aggregating human VHs with binding specificities have relied on a combination of recombinant DNA technology and phage-display technology. VH gene libraries are constructed synthetically by randomizing the CDRs of a single VH scaffold fused to a gene encoding a phage coat protein. Recombinant phage expressing the resulting VH libraries in fusion with the pIII protein is propagated in Escherichia coli. Monoclonal phage displaying VHs with specificities for target antigens are isolated from the libraries by a process called panning. The exertion of stability pressure in addition to binding pressure during panning ensures that the isolated VH binders are also non-aggregating. The genes encoding the desired VHs selected from the libraries are packaged within the phage particles, linking genotype and phenotype, hence making possible the identification of the selected VHs through identifying its physically linked genotype. Here, we describe the application of recombinant DNA and phage-display technologies for the construction of a phage-displayed human VH library, the panning of the library against a protein, and the expression, purification, and characterization of non-aggregating VHs isolated by panning.

UI MeSH Term Description Entries
D007135 Immunoglobulin Variable Region That region of the immunoglobulin molecule that varies in its amino acid sequence and composition, and comprises the binding site for a specific antigen. It is located at the N-terminus of the Fab fragment of the immunoglobulin. It includes hypervariable regions (COMPLEMENTARITY DETERMINING REGIONS) and framework regions. Variable Region, Ig,Variable Region, Immunoglobulin,Framework Region, Immunoglobulin,Fv Antibody Fragments,Fv Fragments,Ig Framework Region,Ig Variable Region,Immunoglobulin Framework Region,Immunoglobulin Fv Fragments,Immunoglobulin V,Antibody Fragment, Fv,Antibody Fragments, Fv,Fragment, Fv,Fragment, Fv Antibody,Fragment, Immunoglobulin Fv,Fragments, Fv,Fragments, Fv Antibody,Fragments, Immunoglobulin Fv,Framework Region, Ig,Framework Regions, Ig,Framework Regions, Immunoglobulin,Fv Antibody Fragment,Fv Fragment,Fv Fragment, Immunoglobulin,Fv Fragments, Immunoglobulin,Ig Framework Regions,Ig Variable Regions,Immunoglobulin Framework Regions,Immunoglobulin Fv Fragment,Immunoglobulin Variable Regions,Regions, Immunoglobulin Variable,Variable Regions, Ig,Variable Regions, Immunoglobulin
D007143 Immunoglobulin Heavy Chains The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa. Immunoglobulins, Heavy-Chain,Heavy-Chain Immunoglobulins,Ig Heavy Chains,Immunoglobulin Heavy Chain,Immunoglobulin Heavy Chain Subgroup VH-I,Immunoglobulin Heavy Chain Subgroup VH-III,Heavy Chain Immunoglobulins,Heavy Chain, Immunoglobulin,Heavy Chains, Ig,Heavy Chains, Immunoglobulin,Immunoglobulin Heavy Chain Subgroup VH I,Immunoglobulin Heavy Chain Subgroup VH III,Immunoglobulins, Heavy Chain
D008967 Molecular Biology A discipline concerned with studying biological phenomena in terms of the chemical and physical interactions of molecules. Biochemical Genetics,Biology, Molecular,Genetics, Biochemical,Genetics, Molecular,Molecular Genetics,Biochemical Genetic,Genetic, Biochemical,Genetic, Molecular,Molecular Genetic
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Mehdi Arbabi-Ghahroudi, and Roger MacKenzie, and Jamshid Tanha
April 1999, Nature biotechnology,
Mehdi Arbabi-Ghahroudi, and Roger MacKenzie, and Jamshid Tanha
January 2004, Methods in molecular biology (Clifton, N.J.),
Mehdi Arbabi-Ghahroudi, and Roger MacKenzie, and Jamshid Tanha
April 2024, Cold Spring Harbor protocols,
Mehdi Arbabi-Ghahroudi, and Roger MacKenzie, and Jamshid Tanha
October 2002, Science (New York, N.Y.),
Mehdi Arbabi-Ghahroudi, and Roger MacKenzie, and Jamshid Tanha
May 2000, Journal of immunological methods,
Mehdi Arbabi-Ghahroudi, and Roger MacKenzie, and Jamshid Tanha
April 2019, Molecular biotechnology,
Mehdi Arbabi-Ghahroudi, and Roger MacKenzie, and Jamshid Tanha
January 2018, Methods in molecular biology (Clifton, N.J.),
Mehdi Arbabi-Ghahroudi, and Roger MacKenzie, and Jamshid Tanha
January 2023, Methods in molecular biology (Clifton, N.J.),
Mehdi Arbabi-Ghahroudi, and Roger MacKenzie, and Jamshid Tanha
October 1996, Journal of immunological methods,
Mehdi Arbabi-Ghahroudi, and Roger MacKenzie, and Jamshid Tanha
September 2020, International journal of molecular sciences,
Copied contents to your clipboard!