Selection of binders from phage displayed antibody libraries using the BIAcore biosensor. 1996

A C Malmborg, and M Dueñas, and M Ohlin, and E Söderlind, and C A Borrebaeck
Department of Immunotechnology, Lund University, Sweden.

In this report we show that phage displayed antibodies can be selected based on dissociation rate constants, using a BIAcore biosensor. To demonstrate the principle, two Fab phage stocks displaying antibodies specific for hen egg lysozyme or phenyloxazolone were mixed in a ratio of 1:10 and injected over the biosensor chip containing immobilized lysozyme. Antigen-specific bound phages were eluted and analysed for specificity and phage titer. This procedure enriched for phages carrying specific antibodies. Selection of high affinity binders from phage libraries was then demonstrated with the BIAcore when phages were eluted and collected at different time points. Soluble antibody fragments were subsequently expressed and their kinetic parameters were determined. The time of elution was directly proportional to the affinity, due to decreased dissociation rate constants. This procedure offers a rapid and simple approach for selecting binders from phage libraries differing in antibody dissociation rate constants.

UI MeSH Term Description Entries
D007135 Immunoglobulin Variable Region That region of the immunoglobulin molecule that varies in its amino acid sequence and composition, and comprises the binding site for a specific antigen. It is located at the N-terminus of the Fab fragment of the immunoglobulin. It includes hypervariable regions (COMPLEMENTARITY DETERMINING REGIONS) and framework regions. Variable Region, Ig,Variable Region, Immunoglobulin,Framework Region, Immunoglobulin,Fv Antibody Fragments,Fv Fragments,Ig Framework Region,Ig Variable Region,Immunoglobulin Framework Region,Immunoglobulin Fv Fragments,Immunoglobulin V,Antibody Fragment, Fv,Antibody Fragments, Fv,Fragment, Fv,Fragment, Fv Antibody,Fragment, Immunoglobulin Fv,Fragments, Fv,Fragments, Fv Antibody,Fragments, Immunoglobulin Fv,Framework Region, Ig,Framework Regions, Ig,Framework Regions, Immunoglobulin,Fv Antibody Fragment,Fv Fragment,Fv Fragment, Immunoglobulin,Fv Fragments, Immunoglobulin,Ig Framework Regions,Ig Variable Regions,Immunoglobulin Framework Regions,Immunoglobulin Fv Fragment,Immunoglobulin Variable Regions,Regions, Immunoglobulin Variable,Variable Regions, Ig,Variable Regions, Immunoglobulin
D007140 Immunoglobulin Fab Fragments Univalent antigen-binding fragments composed of one entire IMMUNOGLOBULIN LIGHT CHAIN and the amino terminal end of one of the IMMUNOGLOBULIN HEAVY CHAINS from the hinge region, linked to each other by disulfide bonds. Fab contains the IMMUNOGLOBULIN VARIABLE REGIONS, which are part of the antigen-binding site, and the first IMMUNOGLOBULIN CONSTANT REGIONS. This fragment can be obtained by digestion of immunoglobulins with the proteolytic enzyme PAPAIN. Fab Fragment,Fab Fragments,Ig Fab Fragments,Immunoglobulins, Fab Fragment,Fab Immunoglobulin Fragments,Immunoglobulin Fab Fragment,Immunoglobulins, Fab,Fab Fragment Immunoglobulins,Fab Fragment, Immunoglobulin,Fab Fragments, Immunoglobulin,Fragment Immunoglobulins, Fab,Fragment, Fab,Immunoglobulin Fragments, Fab
D007147 Immunoglobulin Light Chains Polypeptide chains, consisting of 211 to 217 amino acid residues and having a molecular weight of approximately 22 kDa. There are two major types of light chains, kappa and lambda. Two Ig light chains and two Ig heavy chains (IMMUNOGLOBULIN HEAVY CHAINS) make one immunoglobulin molecule. Ig Light Chains,Immunoglobulins, Light-Chain,Immunoglobulin Light Chain,Immunoglobulin Light-Chain,Light-Chain Immunoglobulins,Chains, Ig Light,Chains, Immunoglobulin Light,Immunoglobulins, Light Chain,Light Chain Immunoglobulins,Light Chain, Immunoglobulin,Light Chains, Ig,Light Chains, Immunoglobulin,Light-Chain, Immunoglobulin
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009113 Muramidase A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17. Lysozyme,Leftose,N-Acetylmuramide Glycanhydrolase,Glycanhydrolase, N-Acetylmuramide,N Acetylmuramide Glycanhydrolase
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D001435 Bacteriophages Viruses whose hosts are bacterial cells. Phages,Bacteriophage,Phage
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001666 Binding Sites, Antibody Local surface sites on antibodies which react with antigen determinant sites on antigens (EPITOPES.) They are formed from parts of the variable regions of FAB FRAGMENTS. Antibody Binding Sites,Paratopes,Antibody Binding Site,Binding Site, Antibody,Paratope

Related Publications

A C Malmborg, and M Dueñas, and M Ohlin, and E Söderlind, and C A Borrebaeck
January 2015, Journal of visualized experiments : JoVE,
A C Malmborg, and M Dueñas, and M Ohlin, and E Söderlind, and C A Borrebaeck
September 2007, Biochemical and biophysical research communications,
A C Malmborg, and M Dueñas, and M Ohlin, and E Söderlind, and C A Borrebaeck
January 1998, Methods in molecular medicine,
A C Malmborg, and M Dueñas, and M Ohlin, and E Söderlind, and C A Borrebaeck
February 2009, Applied biochemistry and biotechnology,
A C Malmborg, and M Dueñas, and M Ohlin, and E Söderlind, and C A Borrebaeck
September 2007, Biosensors & bioelectronics,
A C Malmborg, and M Dueñas, and M Ohlin, and E Söderlind, and C A Borrebaeck
January 2014, Methods in molecular biology (Clifton, N.J.),
A C Malmborg, and M Dueñas, and M Ohlin, and E Söderlind, and C A Borrebaeck
January 1996, Methods in molecular biology (Clifton, N.J.),
A C Malmborg, and M Dueñas, and M Ohlin, and E Söderlind, and C A Borrebaeck
January 2009, Methods in molecular biology (Clifton, N.J.),
A C Malmborg, and M Dueñas, and M Ohlin, and E Söderlind, and C A Borrebaeck
February 1999, Combinatorial chemistry & high throughput screening,
A C Malmborg, and M Dueñas, and M Ohlin, and E Söderlind, and C A Borrebaeck
August 1998, Current opinion in biotechnology,
Copied contents to your clipboard!