Estrogen-induced ribonuclease activity in Xenopus liver. 1991

R L Pastori, and J E Moskaitis, and D R Schoenberg
Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799.

Estrogen administration to male Xenopus causes the cytoplasmic destabilization of the hepatic serum protein coding mRNAs, most notably, albumin, yet has little effect on mRNAs encoding intracellular proteins such as ferritin. This report describes an estrogen-inducible ribonuclease activity found in liver polysomes that degrades albumin mRNA 4 times faster in vitro than it degrades ferritin mRNA. This differential rate of degradation was observed upon incubation of polysome extract with free liver RNA, isolated liver mRNPs, or transcripts from plasmid vectors. A cleavage fragment consisting of a doublet of approximately 194 nucleotides in length was consistently observed upon digestion of transcripts for the full length or 5' half of albumin mRNA. The generation of this cleavage fragment was used as an assay to study properties of the polysome nuclease activity. The 194 doublet is produced by the action of a Mg(2+)-independent endonuclease. This distinguishes the Xenopus liver enzyme from the enzymes that degrade histone or c-myc mRNA in vitro. It is inactivated by 400 mM NaCl or heating at 90 degrees C, but not by placental ribonuclease inhibitor or N-ethylmaleimide. Finally, the polysomal nuclease activity does not degrade double-stranded RNA. We believe the estrogen-induced nuclease activity contains an enzyme(s) that may mediate hormone-regulated changes in mRNA stability in this tissue.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004722 Endoribonucleases A family of enzymes that catalyze the endonucleolytic cleavage of RNA. It includes EC 3.1.26.-, EC 3.1.27.-, EC 3.1.30.-, and EC 3.1.31.-. Endoribonuclease
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D004967 Estrogens Compounds that interact with ESTROGEN RECEPTORS in target tissues to bring about the effects similar to those of ESTRADIOL. Estrogens stimulate the female reproductive organs, and the development of secondary female SEX CHARACTERISTICS. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds. Estrogen,Estrogen Effect,Estrogen Effects,Estrogen Receptor Agonists,Estrogenic Agents,Estrogenic Compounds,Estrogenic Effect,Estrogenic Effects,Agents, Estrogenic,Agonists, Estrogen Receptor,Compounds, Estrogenic,Effects, Estrogen,Effects, Estrogenic,Receptor Agonists, Estrogen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012260 Ribonucleases Enzymes that catalyze the hydrolysis of ester bonds within RNA. EC 3.1.-. Nucleases, RNA,RNase,Acid Ribonuclease,Alkaline Ribonuclease,Ribonuclease,RNA Nucleases,Ribonuclease, Acid,Ribonuclease, Alkaline

Related Publications

R L Pastori, and J E Moskaitis, and D R Schoenberg
November 1979, Science (New York, N.Y.),
R L Pastori, and J E Moskaitis, and D R Schoenberg
May 1954, The Journal of biological chemistry,
R L Pastori, and J E Moskaitis, and D R Schoenberg
February 1986, The Journal of biological chemistry,
R L Pastori, and J E Moskaitis, and D R Schoenberg
August 1986, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
R L Pastori, and J E Moskaitis, and D R Schoenberg
May 1968, Biochimica et biophysica acta,
R L Pastori, and J E Moskaitis, and D R Schoenberg
November 1972, Cancer research,
R L Pastori, and J E Moskaitis, and D R Schoenberg
July 1972, Life sciences. Pt. 2: Biochemistry, general and molecular biology,
R L Pastori, and J E Moskaitis, and D R Schoenberg
January 1982, The Journal of biological chemistry,
R L Pastori, and J E Moskaitis, and D R Schoenberg
April 1981, The Journal of biological chemistry,
R L Pastori, and J E Moskaitis, and D R Schoenberg
January 1999, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!