| D002460 |
Cell Line |
Established cell cultures that have the potential to propagate indefinitely. |
Cell Lines,Line, Cell,Lines, Cell |
|
| D006031 |
Glycosylation |
The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). |
Protein Glycosylation,Glycosylation, Protein |
|
| D006224 |
Cricetinae |
A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. |
Cricetus,Hamsters,Hamster |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D012412 |
Rubella virus |
The type (and only) species of RUBIVIRUS causing acute infection in humans, primarily children and young adults. Humans are the only natural host. A live, attenuated vaccine is available for prophylaxis. |
Measles Virus, German,German Measles Virus |
|
| D014759 |
Viral Envelope Proteins |
Integral membrane proteins that are incorporated into the VIRAL ENVELOPE. They are glycosylated during VIRAL ASSEMBLY. |
Envelope Proteins, Viral,Viral Envelope Glycoproteins,Viral Envelope Protein,Virus Envelope Protein,Virus Peplomer Proteins,Bovine Leukemia Virus Glycoprotein gp51,Hepatitis Virus (MHV) Glycoprotein E2,LaCrosse Virus Envelope Glycoprotein G1,Simian Sarcoma Virus Glycoprotein 70,Viral Envelope Glycoprotein gPr90 (Murine Leukemia Virus),Viral Envelope Glycoprotein gp55 (Friend Virus),Viral Envelope Proteins E1,Viral Envelope Proteins E2,Viral Envelope Proteins gp52,Viral Envelope Proteins gp70,Virus Envelope Proteins,Envelope Glycoproteins, Viral,Envelope Protein, Viral,Envelope Protein, Virus,Envelope Proteins, Virus,Glycoproteins, Viral Envelope,Peplomer Proteins, Virus,Protein, Viral Envelope,Protein, Virus Envelope,Proteins, Viral Envelope,Proteins, Virus Envelope,Proteins, Virus Peplomer |
|
| D016297 |
Mutagenesis, Site-Directed |
Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. |
Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses |
|
| D053585 |
Virus Attachment |
The binding of VIRUS PARTICLES to VIRUS RECEPTORS on the host cell surface, facilitating VIRUS ENTRY into the cell. |
Viral Attachment,Viral Binding,Virus Binding,Attachment, Viral,Attachment, Virus,Binding, Viral,Binding, Virus |
|
| D053586 |
Virus Internalization |
The entering of cells by viruses following VIRUS ATTACHMENT. This is achieved by ENDOCYTOSIS, by translocation of the whole virus across the cell membrane, by direct MEMBRANE FUSION of the viral membrane with the CELL MEMBRANE, or by fusion of the membrane of infected cells with the membrane of non-infected cells causing SYNCYTIA to be formed. |
Viral Entry,Viral Internalization,Viral Membrane Fusion,Virus Entry,Virus Membrane Fusion,Entry, Viral,Entry, Virus,Fusion, Viral Membrane,Internalization, Viral,Internalization, Virus,Membrane Fusion, Viral |
|
| D019943 |
Amino Acid Substitution |
The naturally occurring or experimentally induced replacement of one or more AMINO ACIDS in a protein with another. If a functionally equivalent amino acid is substituted, the protein may retain wild-type activity. Substitution may also diminish, enhance, or eliminate protein function. Experimentally induced substitution is often used to study enzyme activities and binding site properties. |
Amino Acid Substitutions,Substitution, Amino Acid,Substitutions, Amino Acid |
|