Analysis of rubella virus E1 glycosylation mutants expressed in COS cells. 1991

T C Hobman, and Z Y Qiu, and H Chaye, and S Gillam
Department of Pathology, University of British Columbia Research Center, Vancouver, Canada.

cDNA clones encoding the envelope glycoprotein E1 of rubella virus (RV) were altered by site-directed mutagenesis at consensus sites for addition of N-linked glycans. The resulting plasmids were introduced into COS cells and the mutant E1 proteins were analyzed by indirect immunofluorescence, radioimmunoprecipitation, and immunoblotting. We found that RV E1 contains three N-linked oligosaccharides, each approximately 2 kDa in size. Although lack of glycosylation did not appear to affect targeting of E1 to the Golgi region, mutants lacking N-linked glycans at Asn 177 and Asn 209 failed to bind anti-E1 antibodies under nonreducing conditions. Our results suggest that glycosylation may be important for expression of important immunologic epitopes on RV E1.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012412 Rubella virus The type (and only) species of RUBIVIRUS causing acute infection in humans, primarily children and young adults. Humans are the only natural host. A live, attenuated vaccine is available for prophylaxis. Measles Virus, German,German Measles Virus
D014759 Viral Envelope Proteins Integral membrane proteins that are incorporated into the VIRAL ENVELOPE. They are glycosylated during VIRAL ASSEMBLY. Envelope Proteins, Viral,Viral Envelope Glycoproteins,Viral Envelope Protein,Virus Envelope Protein,Virus Peplomer Proteins,Bovine Leukemia Virus Glycoprotein gp51,Hepatitis Virus (MHV) Glycoprotein E2,LaCrosse Virus Envelope Glycoprotein G1,Simian Sarcoma Virus Glycoprotein 70,Viral Envelope Glycoprotein gPr90 (Murine Leukemia Virus),Viral Envelope Glycoprotein gp55 (Friend Virus),Viral Envelope Proteins E1,Viral Envelope Proteins E2,Viral Envelope Proteins gp52,Viral Envelope Proteins gp70,Virus Envelope Proteins,Envelope Glycoproteins, Viral,Envelope Protein, Viral,Envelope Protein, Virus,Envelope Proteins, Virus,Glycoproteins, Viral Envelope,Peplomer Proteins, Virus,Protein, Viral Envelope,Protein, Virus Envelope,Proteins, Viral Envelope,Proteins, Virus Envelope,Proteins, Virus Peplomer
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

T C Hobman, and Z Y Qiu, and H Chaye, and S Gillam
September 1994, Journal of clinical microbiology,
T C Hobman, and Z Y Qiu, and H Chaye, and S Gillam
September 1990, Virology,
T C Hobman, and Z Y Qiu, and H Chaye, and S Gillam
January 2009, Intervirology,
T C Hobman, and Z Y Qiu, and H Chaye, and S Gillam
January 2005, Intervirology,
T C Hobman, and Z Y Qiu, and H Chaye, and S Gillam
March 1996, Clinical and diagnostic laboratory immunology,
T C Hobman, and Z Y Qiu, and H Chaye, and S Gillam
August 2013, Zhonghua shi yan he lin chuang bing du xue za zhi = Zhonghua shiyan he linchuang bingduxue zazhi = Chinese journal of experimental and clinical virology,
T C Hobman, and Z Y Qiu, and H Chaye, and S Gillam
February 1995, Journal of clinical microbiology,
T C Hobman, and Z Y Qiu, and H Chaye, and S Gillam
December 1998, Experimental & molecular medicine,
T C Hobman, and Z Y Qiu, and H Chaye, and S Gillam
January 1992, Archives of virology,
Copied contents to your clipboard!