Curcumin attenuates 6-hydroxydopamine-induced cytotoxicity by anti-oxidation and nuclear factor-kappa B modulation in MES23.5 cells. 2009

Jun Wang, and Xi-Xun Du, and Hong Jiang, and Jun-Xia Xie
National Key Disciplines: Physiology (in incubation), Department of Physiology, Medical College of Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, China.

Oxidative stress has been implicated in the degeneration of dopaminergic neurons in the substantia nigra of Parkinson's disease patients, and several anti-oxidants have been shown to be effective on the treatment of Parkinson's disease. Curcumin has been previously reported to possess radical scavenger, iron chelating, anti-inflammatory properties in different tissues. The aim of present study is to explore the cytoprotection of curcumin against 6-hydroxydopamine (6-OHDA)-induced neuronal death, as well as the underlying mechanisms in MES23.5 cells. Our results showed that 6-OHDA significantly reduced the cell viability of MES23.5 cells. Curcumin protected MES23.5 cells against 6-OHDA neurotoxicity by partially restoring the mitochondrial membrane potential, increasing the level of Cu-Zn superoxide dismutase and suppressing an increase in intracellular reactive oxygen species. Furthermore, curcumin pretreatment significantly inhibited 6-OHDA induced nuclear factor-kappaB translocation. These results suggest that the neuroprotective effects of curcumin are attributed to the antioxidative properties and the modulation of nuclear factor-kappaB translocation.

UI MeSH Term Description Entries
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003474 Curcumin A yellow-orange dye obtained from tumeric, the powdered root of CURCUMA longa. It is used in the preparation of curcuma paper and the detection of boron. Curcumin appears to possess a spectrum of pharmacological properties, due primarily to its inhibitory effects on metabolic enzymes. 1,6-Heptadiene-3,5-dione, 1,7-bis(4-hydroxy-3-methoxyphenyl)-, (E,E)-,Curcumin Phytosome,Diferuloylmethane,Mervia,Turmeric Yellow,Phytosome, Curcumin,Yellow, Turmeric
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous
D016328 NF-kappa B Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA. Immunoglobulin Enhancer-Binding Protein,NF-kappa B Complex,Nuclear Factor kappa B,Transcription Factor NF-kB,kappa B Enhancer Binding Protein,Ig-EBP-1,NF-kB,NF-kappaB,Nuclear Factor-Kappab,Complex, NF-kappa B,Enhancer-Binding Protein, Immunoglobulin,Factor NF-kB, Transcription,Factor-Kappab, Nuclear,Ig EBP 1,Immunoglobulin Enhancer Binding Protein,NF kB,NF kappa B Complex,NF kappaB,NF-kB, Transcription Factor,Nuclear Factor Kappab,Transcription Factor NF kB
D016627 Oxidopamine A neurotransmitter analogue that depletes noradrenergic stores in nerve endings and induces a reduction of dopamine levels in the brain. Its mechanism of action is related to the production of cytolytic free-radicals. 6-Hydroxydopamine,6-OHDA,Oxidopamine Hydrobromide,Oxidopamine Hydrochloride,6 Hydroxydopamine,Hydrobromide, Oxidopamine,Hydrochloride, Oxidopamine
D016923 Cell Death The termination of the cell's ability to carry out vital functions such as metabolism, growth, reproduction, responsiveness, and adaptability. Death, Cell
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative

Related Publications

Jun Wang, and Xi-Xun Du, and Hong Jiang, and Jun-Xia Xie
August 2001, Biochemical pharmacology,
Jun Wang, and Xi-Xun Du, and Hong Jiang, and Jun-Xia Xie
September 2009, Journal of molecular neuroscience : MN,
Jun Wang, and Xi-Xun Du, and Hong Jiang, and Jun-Xia Xie
March 2007, The British journal of ophthalmology,
Jun Wang, and Xi-Xun Du, and Hong Jiang, and Jun-Xia Xie
January 2011, Neuropharmacology,
Jun Wang, and Xi-Xun Du, and Hong Jiang, and Jun-Xia Xie
May 2004, Brain research,
Jun Wang, and Xi-Xun Du, and Hong Jiang, and Jun-Xia Xie
July 2003, American journal of respiratory cell and molecular biology,
Jun Wang, and Xi-Xun Du, and Hong Jiang, and Jun-Xia Xie
March 2013, Journal of cellular physiology,
Jun Wang, and Xi-Xun Du, and Hong Jiang, and Jun-Xia Xie
April 1997, Biochemical pharmacology,
Jun Wang, and Xi-Xun Du, and Hong Jiang, and Jun-Xia Xie
June 2009, Biological & pharmaceutical bulletin,
Jun Wang, and Xi-Xun Du, and Hong Jiang, and Jun-Xia Xie
April 2012, Life sciences,
Copied contents to your clipboard!