Construction and flow cytometric screening of targeted enzyme libraries. 2009

Navin Varadarajan, and Jason R Cantor, and George Georgiou, and Brent L Iverson
Institute for Cell and Molecular Biology, University of Texas, Austin, TX, USA.

Herein, we describe a methodology for the construction of targeted libraries intended to modify the substrate specificity of proteases expressed on the cell surface of Escherichia coli. The native outer membrane protease, OmpT, is used as a model system. The protocol relies on gene assembly using oligonucleotides and is easily adaptable to any enzyme in which information is available on the putative active site residues. Increasingly complex libraries can be generated in a systematic manner and screened using flow cytometry (fluorescence-activated cell sorting, FACS) for variants displaying altered function. Furthermore, if the substrate-binding pockets have not been elucidated, a protocol for partial multi-site saturation library construction is presented that allows for sampling a large number of residues, while maintaining an appropriate level of protein function. The entire procedure, from start to finish, should take approximately 2-3 weeks.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004798 Enzymes Biological molecules that possess catalytic activity. They may occur naturally or be synthetically created. Enzymes are usually proteins, however CATALYTIC RNA and CATALYTIC DNA molecules have also been identified. Biocatalyst,Enzyme,Biocatalysts
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D001425 Bacterial Outer Membrane Proteins Proteins isolated from the outer membrane of Gram-negative bacteria. OMP Proteins,Outer Membrane Proteins, Bacterial,Outer Membrane Lipoproteins, Bacterial
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D015202 Protein Engineering Procedures by which protein structure and function are changed or created in vitro by altering existing or synthesizing new structural genes that direct the synthesis of proteins with sought-after properties. Such procedures may include the design of MOLECULAR MODELS of proteins using COMPUTER GRAPHICS or other molecular modeling techniques; site-specific mutagenesis (MUTAGENESIS, SITE-SPECIFIC) of existing genes; and DIRECTED MOLECULAR EVOLUTION techniques to create new genes. Genetic Engineering of Proteins,Genetic Engineering, Protein,Proteins, Genetic Engineering,Engineering, Protein,Engineering, Protein Genetic,Protein Genetic Engineering
D020134 Catalytic Domain The region of an enzyme that interacts with its substrate to cause the enzymatic reaction. Active Site,Catalytic Core,Catalytic Region,Catalytic Site,Catalytic Subunit,Reactive Site,Active Sites,Catalytic Cores,Catalytic Domains,Catalytic Regions,Catalytic Sites,Catalytic Subunits,Core, Catalytic,Cores, Catalytic,Domain, Catalytic,Domains, Catalytic,Reactive Sites,Region, Catalytic,Regions, Catalytic,Site, Active,Site, Catalytic,Site, Reactive,Sites, Active,Sites, Catalytic,Sites, Reactive,Subunit, Catalytic,Subunits, Catalytic

Related Publications

Navin Varadarajan, and Jason R Cantor, and George Georgiou, and Brent L Iverson
September 2000, Journal of immunological methods,
Navin Varadarajan, and Jason R Cantor, and George Georgiou, and Brent L Iverson
January 2004, Methods in molecular biology (Clifton, N.J.),
Navin Varadarajan, and Jason R Cantor, and George Georgiou, and Brent L Iverson
January 2004, Biotechnology progress,
Navin Varadarajan, and Jason R Cantor, and George Georgiou, and Brent L Iverson
July 2008, Current protocols in cytometry,
Navin Varadarajan, and Jason R Cantor, and George Georgiou, and Brent L Iverson
January 2002, Methods in molecular medicine,
Navin Varadarajan, and Jason R Cantor, and George Georgiou, and Brent L Iverson
January 2013, Methods in enzymology,
Navin Varadarajan, and Jason R Cantor, and George Georgiou, and Brent L Iverson
January 2011, Methods in molecular biology (Clifton, N.J.),
Navin Varadarajan, and Jason R Cantor, and George Georgiou, and Brent L Iverson
October 2007, Current protocols in cytometry,
Navin Varadarajan, and Jason R Cantor, and George Georgiou, and Brent L Iverson
October 1994, Current opinion in biotechnology,
Navin Varadarajan, and Jason R Cantor, and George Georgiou, and Brent L Iverson
January 2010, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!