Comparative effects of folate antagonists versus enzymatic folate depletion on folate and thymidine enzymes in cultured mammalian cells. 1977

P L Chello, and C A McQueen, and L M DeAngelis, and J R Bertino

UI MeSH Term Description Entries
D007951 Leukemia, Myeloid Form of leukemia characterized by an uncontrolled proliferation of the myeloid lineage and their precursors (MYELOID PROGENITOR CELLS) in the bone marrow and other sites. Granulocytic Leukemia,Leukemia, Granulocytic,Leukemia, Myelocytic,Leukemia, Myelogenous,Myelocytic Leukemia,Myelogenous Leukemia,Myeloid Leukemia,Leukemia, Monocytic, Chronic,Monocytic Leukemia, Chronic,Chronic Monocytic Leukemia,Chronic Monocytic Leukemias,Granulocytic Leukemias,Leukemia, Chronic Monocytic,Leukemias, Chronic Monocytic,Leukemias, Granulocytic,Leukemias, Myelocytic,Leukemias, Myelogenous,Leukemias, Myeloid,Monocytic Leukemias, Chronic,Myelocytic Leukemias,Myelogenous Leukemias,Myeloid Leukemias
D008754 Methylenetetrahydrofolate Dehydrogenase (NADP) An NADP-dependent oxidoreductase that catalyses the conversion of 5,10-methyleneterahydrofolate to 5,10-methenyl-tetrahydrofolate. In higher eukaryotes a trifunctional enzyme exists with additional METHENYLTETRAHYDROFOLATE CYCLOHYDROLASE and FORMATE-TETRAHYDROFOLATE LIGASE activity. The enzyme plays an important role in the synthesis of 5-methyltetrahydrofolate, the methyl donor for the VITAMIN B12-dependent remethylation of HOMOCYSTEINE to METHIONINE via METHIONINE SYNTHETASE. Methylenetetrahydrofolate Dehydrogenase (NADP+),Methylenetetrahydrofolate Dehydrogenase,Dehydrogenase, Methylenetetrahydrofolate
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D002268 Carboxypeptidases Enzymes that act at a free C-terminus of a polypeptide to liberate a single amino acid residue. Carboxypeptidase
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005492 Folic Acid A member of the vitamin B family that stimulates the hematopoietic system. It is present in the liver and kidney and is found in mushrooms, spinach, yeast, green leaves, and grasses (POACEAE). Folic acid is used in the treatment and prevention of folate deficiencies and megaloblastic anemia. Pteroylglutamic Acid,Vitamin M,Folacin,Folate,Folic Acid, (D)-Isomer,Folic Acid, (DL)-Isomer,Folic Acid, Calcium Salt (1:1),Folic Acid, Monopotassium Salt,Folic Acid, Monosodium Salt,Folic Acid, Potassium Salt,Folic Acid, Sodium Salt,Folvite,Vitamin B9,B9, Vitamin
D005493 Folic Acid Antagonists Inhibitors of the enzyme, dihydrofolate reductase (TETRAHYDROFOLATE DEHYDROGENASE), which converts dihydrofolate (FH2) to tetrahydrofolate (FH4). They are frequently used in cancer chemotherapy. (From AMA, Drug Evaluations Annual, 1994, p2033) Antifolate,Antifolates,Dihydrofolate Reductase Inhibitor,Folic Acid Antagonist,Dihydrofolate Reductase Inhibitors,Folic Acid Metabolism Inhibitors,Acid Antagonist, Folic,Acid Antagonists, Folic,Antagonist, Folic Acid,Antagonists, Folic Acid,Inhibitor, Dihydrofolate Reductase,Inhibitors, Dihydrofolate Reductase,Reductase Inhibitor, Dihydrofolate,Reductase Inhibitors, Dihydrofolate
D005574 Formate-Tetrahydrofolate Ligase A carbon-nitrogen ligase that catalyzes the formation of 10-formyltetrahydrofolate from formate and tetrahydrofolate in the presence of ATP. In higher eukaryotes the enzyme also contains METHYLENETETRAHYDROFOLATE DEHYDROGENASE (NADP+) and METHENYLTETRAHYDROFOLATE CYCLOHYDROLASE activity. Tetrahydrofolate Formylase,Formyltetrahydrofolate Synthetase,Formate Tetrahydrofolate Ligase,Formylase, Tetrahydrofolate,Ligase, Formate-Tetrahydrofolate,Synthetase, Formyltetrahydrofolate

Related Publications

P L Chello, and C A McQueen, and L M DeAngelis, and J R Bertino
December 1974, Canadian journal of biochemistry,
P L Chello, and C A McQueen, and L M DeAngelis, and J R Bertino
May 1977, Archives of biochemistry and biophysics,
P L Chello, and C A McQueen, and L M DeAngelis, and J R Bertino
December 1975, Experientia,
P L Chello, and C A McQueen, and L M DeAngelis, and J R Bertino
November 2007, The Journal of biological chemistry,
P L Chello, and C A McQueen, and L M DeAngelis, and J R Bertino
May 1973, Biochemistry,
P L Chello, and C A McQueen, and L M DeAngelis, and J R Bertino
May 1987, Biochimica et biophysica acta,
P L Chello, and C A McQueen, and L M DeAngelis, and J R Bertino
April 1990, Toxicology,
P L Chello, and C A McQueen, and L M DeAngelis, and J R Bertino
February 1985, General physiology and biophysics,
P L Chello, and C A McQueen, and L M DeAngelis, and J R Bertino
April 1987, Mutation research,
Copied contents to your clipboard!