Electrophysiological properties of ventral cochlear nucleus neurons of the dog. 2009

Ramazan Bal, and Giyasettin Baydas, and Mustafa Naziroglu
Department of Biophysics, Faculty of Medicine, Firat University, 23119 Elazig, Turkey. rbal1969@gmail.com

Neurons in the cochlear nucleus (CN) have distinct anatomical and biophysical specializations and extract various facets of auditory information which are transmitted to the higher auditory centres. The aim of the present study was to determine if the principal neurons (stellate, bushy and octopus cells) of the ventral cochlear nucleus (VCN) in 2-week-old dog brain slices share common electrophysiological properties with the principal neurons of mouse VCN. Stellate cells (n=21, of which three were anatomically identified), fired large, regular trains of action potentials in response to depolarizing current pulses. Input resistance and membrane time constant were 176+/-35.9 MOmega (n=21) and 8.8+/-1.4 ms (n=21), respectively. Bushy cells, (n=6, of which three were anatomically identified) responded with a single action potential at the onset of depolarizing current steps and showed large hyperpolarizing voltage changes that sag back toward rest to hyperpolarizing current pulses. Input resistance and membrane time constant were 120.4+/-56.1 MOmega (n=5) and 7.6+/-2.3 ms (n=5), respectively. Octopus cells (n=17, of which seven were anatomically identified) fired a single action potential at the start of a depolarizing current step and exhibited a pronounced depolarizing sag of the membrane potential towards the resting value to hyperpolarizing current steps. Input resistance and membrane time constant were 17.58+/-1.3 MOmega (n=15) and 1.34+/-0.13 ms (n=15), respectively. While stellate cells did not have a threshold rate of depolarization (dV/dt(thresh)), bushy and octopus had a dV/dt(thresh) of 5.06+/-1.04 mV/ms (n=4) and 10.6+/-2.0 mV/ms (n=6), respectively. In octopus cells, the single action potential was abolished by tetrodotoxin (TTX). An alpha-dendrotoxin (alpha-DTX)-sensitive, low-voltage-activated potassium conductance (g(KL)) together with a ZD7288-sensitive, mixed-cation conductance (g(h)) were responsible for the low input resistance, and as a consequence for the brief time constant of the octopus cells. We conclude that the principal neurons of the dog VCN are, as in mouse and cat, distinguishable on the basis of whole-cell patch-clamp recordings.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011743 Pyrimidines A family of 6-membered heterocyclic compounds occurring in nature in a wide variety of forms. They include several nucleic acid constituents (CYTOSINE; THYMINE; and URACIL) and form the basic structure of the barbiturates.
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004546 Elapid Venoms Venoms from snakes of the family Elapidae, including cobras, kraits, mambas, coral, tiger, and Australian snakes. The venoms contain polypeptide toxins of various kinds, cytolytic, hemolytic, and neurotoxic factors, but fewer enzymes than viper or crotalid venoms. Many of the toxins have been characterized. Cobra Venoms,Elapidae Venom,Elapidae Venoms,Naja Venoms,Cobra Venom,Elapid Venom,Hydrophid Venom,Hydrophid Venoms,King Cobra Venom,Naja Venom,Ophiophagus hannah Venom,Sea Snake Venom,Sea Snake Venoms,Venom, Cobra,Venom, Elapid,Venom, Elapidae,Venom, Hydrophid,Venom, King Cobra,Venom, Naja,Venom, Ophiophagus hannah,Venom, Sea Snake,Venoms, Cobra,Venoms, Elapid,Venoms, Elapidae,Venoms, Hydrophid,Venoms, Naja,Venoms, Sea Snake
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D001306 Auditory Pathways NEURAL PATHWAYS and connections within the CENTRAL NERVOUS SYSTEM, beginning at the hair cells of the ORGAN OF CORTI, continuing along the eighth cranial nerve, and terminating at the AUDITORY CORTEX. Auditory Pathway,Pathway, Auditory,Pathways, Auditory

Related Publications

Ramazan Bal, and Giyasettin Baydas, and Mustafa Naziroglu
June 2009, Journal of the Association for Research in Otolaryngology : JARO,
Ramazan Bal, and Giyasettin Baydas, and Mustafa Naziroglu
September 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Ramazan Bal, and Giyasettin Baydas, and Mustafa Naziroglu
March 1975, Experimental neurology,
Ramazan Bal, and Giyasettin Baydas, and Mustafa Naziroglu
January 1966, Federation proceedings. Translation supplement; selected translations from medical-related science,
Ramazan Bal, and Giyasettin Baydas, and Mustafa Naziroglu
June 1999, The Journal of comparative neurology,
Ramazan Bal, and Giyasettin Baydas, and Mustafa Naziroglu
November 2000, Hearing research,
Ramazan Bal, and Giyasettin Baydas, and Mustafa Naziroglu
January 1995, Hearing research,
Ramazan Bal, and Giyasettin Baydas, and Mustafa Naziroglu
December 2019, Hearing research,
Ramazan Bal, and Giyasettin Baydas, and Mustafa Naziroglu
May 1994, Journal of neurophysiology,
Ramazan Bal, and Giyasettin Baydas, and Mustafa Naziroglu
February 1965, The Journal of comparative neurology,
Copied contents to your clipboard!