The flux from glucose to glutamate in the rat brain in vivo as determined by 1H-observed, 13C-edited NMR spectroscopy. 1990

S M Fitzpatrick, and H P Hetherington, and K L Behar, and R G Shulman
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511.

The rate of incorporation of carbon from [1-13C]glucose into the [4-CH2] and [3-CH2] of cerebral glutamate was measured in the rat brain in vivo by 1H-observed, 13C-edited (POCE) nuclear magnetic resonance (NMR) spectroscopy. Spectra were acquired every 98 s during a 60-min infusion of [1-13C]glucose. Complete time courses were obtained from six animals. The measured intensity of the unresolved [4-13CH2] resonances of glutamate and glutamine increased exponentially during the infusion and attained a steady state in approximately 20 min with a first-order rate constant of 0.130 +/- 0.010 min-1 (t1/2 = 5.3 +/- 0.5 min). The appearance of the [3-13CH2] resonance in the POCE difference spectrum lagged behind that of the [4-13CH2] resonance and had not reached steady state at the end of the 60-min infusion (t1/2 = 26.6 +/- 4.1 min). The increase observed in 13C-labeled glutamate represented isotopic enrichment and was not due to a change in the total glutamate concentration. The glucose infusion did not affect the levels of high-energy phosphates or intracellular pH as determined by 31P NMR spectroscopy. Since glucose carbon is incorporated into glutamate by rapid exchange with the tricarboxylic acid (TCA) cycle intermediate alpha-ketoglutarate, the rate of glutamate labeling provided an estimate of TCA cycle flux. We have determined the flux of carbon through the TCA cycle to be approximately 1.4 mumols g-1 min-1. These experiments demonstrate the feasibility of measuring metabolic fluxes in vivo using 13C-labeled glucose and the technique of 1H-observed, 13C-decoupled NMR spectroscopy.

UI MeSH Term Description Entries
D008297 Male Males
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010758 Phosphorus A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions. Black Phosphorus,Phosphorus-31,Red Phosphorus,White Phosphorus,Yellow Phosphorus,Phosphorus 31,Phosphorus, Black,Phosphorus, Red,Phosphorus, White,Phosphorus, Yellow
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D002952 Citric Acid Cycle A series of oxidative reactions in the breakdown of acetyl units derived from GLUCOSE; FATTY ACIDS; or AMINO ACIDS by means of tricarboxylic acid intermediates. The end products are CARBON DIOXIDE, water, and energy in the form of phosphate bonds. Krebs Cycle,Tricarboxylic Acid Cycle,Citric Acid Cycles,Cycle, Citric Acid,Cycle, Krebs,Cycle, Tricarboxylic Acid,Cycles, Citric Acid,Cycles, Tricarboxylic Acid,Tricarboxylic Acid Cycles
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids

Related Publications

S M Fitzpatrick, and H P Hetherington, and K L Behar, and R G Shulman
January 2003, Magnetic resonance in medicine,
S M Fitzpatrick, and H P Hetherington, and K L Behar, and R G Shulman
October 2003, Magnetic resonance in medicine,
S M Fitzpatrick, and H P Hetherington, and K L Behar, and R G Shulman
December 1989, NMR in biomedicine,
S M Fitzpatrick, and H P Hetherington, and K L Behar, and R G Shulman
March 1993, Biochemical and biophysical research communications,
S M Fitzpatrick, and H P Hetherington, and K L Behar, and R G Shulman
October 1993, European journal of biochemistry,
S M Fitzpatrick, and H P Hetherington, and K L Behar, and R G Shulman
January 2010, Journal of neurochemistry,
S M Fitzpatrick, and H P Hetherington, and K L Behar, and R G Shulman
January 2003, NMR in biomedicine,
S M Fitzpatrick, and H P Hetherington, and K L Behar, and R G Shulman
April 2001, American journal of physiology. Endocrinology and metabolism,
S M Fitzpatrick, and H P Hetherington, and K L Behar, and R G Shulman
July 2003, Magnetic resonance in medicine,
Copied contents to your clipboard!