[1-13C]glucose metabolism in rat cerebellar granule cells and astrocytes in primary culture. Evaluation of flux parameters by 13C- and 1H-NMR spectroscopy. 1993

M Martin, and J C Portais, and J Labouesse, and P Canioni, and M Merle
Institut de Biochimie Cellulaire du CNRS, Université de Bordeaux II, France.

The metabolism of [1-13C]glucose in rat cerebellum astrocytes and granule cells was investigated using 13C- and 1H-NMR spectroscopy. Near homogeneous primary cultures of each cell type were incubated with [1-13C]glucose, under the same conditions. Analysing the relative 13C enrichments of metabolites in spectra of cell perchloric acid extracts, on the one hand, the 13C-1H spin-coupling patterns in 1H-NMR spectra of cell medium lactate and the 13C-13C spin-coupling patterns in 13C-NMR spectra of purified cell glutamate, on the other hand, showed significant differences, between the two cell types, in the activity of various metabolic ways. First, the carbon flux through the oxidative branch of the hexose monophosphate shunt, which leads to unenriched lactate, was found higher in granule cells than in astrocytes. Second, although the specific 13C enrichment of lactate was higher in astrocytes than in granule cells, the fraction of 13C-enriched acetyl-CoA entering the citric acid cycle was more than twice as high in granule cells as in astrocytes. Lactate C3 and acetyl-CoA C2 enrichments were very similar in granule cells, whereas acetyl-CoA C2 enrichment was 60% lower than that of lactate C3 in astrocytes. These results can be explained by the fact that granule cells used almost exclusively the exogenous glucose to fuel the citric acid cycle, whereas astrocytes used concomitantly glucose and other carbon sources. Last, in the case of granule cells, glutamate C2 and C3 enrichments were equivalent; the carbon flux through the pyruvate carboxylase route was evaluated to be around 15% of the carbon flux through the citrate synthetase route. In astrocytes, glutamate C2 enrichment was higher than that of C3, which could be explained by a pyruvate carboxylase activity much more active in these cells than in granule cells.

UI MeSH Term Description Entries
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D002952 Citric Acid Cycle A series of oxidative reactions in the breakdown of acetyl units derived from GLUCOSE; FATTY ACIDS; or AMINO ACIDS by means of tricarboxylic acid intermediates. The end products are CARBON DIOXIDE, water, and energy in the form of phosphate bonds. Krebs Cycle,Tricarboxylic Acid Cycle,Citric Acid Cycles,Cycle, Citric Acid,Cycle, Krebs,Cycle, Tricarboxylic Acid,Cycles, Citric Acid,Cycles, Tricarboxylic Acid,Tricarboxylic Acid Cycles
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M Martin, and J C Portais, and J Labouesse, and P Canioni, and M Merle
July 1998, Glia,
M Martin, and J C Portais, and J Labouesse, and P Canioni, and M Merle
January 1996, Developmental neuroscience,
M Martin, and J C Portais, and J Labouesse, and P Canioni, and M Merle
January 2003, Magnetic resonance in medicine,
M Martin, and J C Portais, and J Labouesse, and P Canioni, and M Merle
March 2010, Metabolic engineering,
M Martin, and J C Portais, and J Labouesse, and P Canioni, and M Merle
March 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
M Martin, and J C Portais, and J Labouesse, and P Canioni, and M Merle
November 1991, Neurochemical research,
M Martin, and J C Portais, and J Labouesse, and P Canioni, and M Merle
January 2003, NMR in biomedicine,
M Martin, and J C Portais, and J Labouesse, and P Canioni, and M Merle
November 1995, Neuroreport,
M Martin, and J C Portais, and J Labouesse, and P Canioni, and M Merle
May 2010, Journal of neurochemistry,
M Martin, and J C Portais, and J Labouesse, and P Canioni, and M Merle
November 1991, European journal of biochemistry,
Copied contents to your clipboard!