Dual effects of calcitonin gene-related peptide on insulin secretion in the perfused dog pancreas. 1990

K Hermansen, and B Ahrén
Department of Medicine, Fåborg Hospital, Denmark.

Calcitonin gene-related peptide (CGRP) is an intrapancreatic neuropeptide with potential effects on islet hormone secretion. To investigate its pancreatic actions, we examined the effects of a 10 min perfusion of synthetic human CGRP on islet hormone release from the isolated dog pancreas (n = 6) at 5.5 mM glucose. At 0.1 nM, CGRP inhibited insulin secretion (P less than 0.01), which was already observed at 2 min after its introduction. After CGRP perfusion was stopped, a stimulatory off-response occurred. In contrast, at higher dose levels, CGRP stimulated insulin secretion. At 1.0 nM, the stimulation was weak and transient (P less than 0.01), occurring only during the first 3 min of CGRP perfusion. At 10 nM, the stimulation continued for 6 min (P less than 0.05), and at 50 nM, the stimulation was marked and sustained throughout the 10 min perfusion period (P less than 0.01). After the CGRP perfusion at 1.0 and 10 nM, but not at 50 nM, a marked stimulatory off-response in insulin secretion was seen. Glucagon and somatostatin secretion were not significantly affected by CGRP at any of the examined concentrations. We conclude that CGRP exerts dual effects on insulin secretion from the perfused dog pancreas: inhibition at low concentrations and stimulation at high concentrations. This pattern of effect might represent a new regulatory concept for neural influences on islet function: the qualitative response being determined by the amount of neurotransmitter released.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor
D000078790 Insulin Secretion Production and release of insulin from PANCREATIC BETA CELLS that primarily occurs in response to elevated BLOOD GLUCOSE levels. Secretion, Insulin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone
D015740 Calcitonin Gene-Related Peptide A 37-amino acid peptide derived from the calcitonin gene. It occurs as a result of alternative processing of mRNA from the calcitonin gene. The neuropeptide is widely distributed in the brain, gut, perivascular nerves, and other tissue. The peptide produces multiple biological effects and has both circulatory and neurotransmitter modes of action. In particular, it is a potent endogenous vasodilator. Calcitonin Gene-Related Peptide I,Calcitonin Gene-Related Peptide II,alpha-CGRP,alpha-Calcitonin Gene-Related Peptide,beta-CGRP,beta-Calcitonin Gene-Related Peptide,Calcitonin Gene Related Peptide,Calcitonin Gene Related Peptide I,Calcitonin Gene Related Peptide II,Gene-Related Peptide, Calcitonin,alpha Calcitonin Gene Related Peptide,beta Calcitonin Gene Related Peptide

Related Publications

K Hermansen, and B Ahrén
October 1988, Regulatory peptides,
K Hermansen, and B Ahrén
May 1999, Metabolism: clinical and experimental,
K Hermansen, and B Ahrén
October 1988, Gastroenterology,
K Hermansen, and B Ahrén
September 1976, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
K Hermansen, and B Ahrén
August 1971, The Tohoku journal of experimental medicine,
Copied contents to your clipboard!