Immunoreactive calcitonin gene-related peptide (CGRP) has been shown to occur in intrapancreatic nerves and islet somatostatin cells in the rat. Therefore, we investigated the effects of CGRP on insulin and glucagon secretion in the rat. CGRP was infused i.v. at one of 3 dose levels (4.3, 17 or 68 pmol/min). Infusion of CGRP alone was found to elevate basal plasma levels of both insulin and glucagon. In contrast, CGRP impaired the plasma insulin responses to both glucose (7 mg/min; P less than 0.001) and arginine (8.5 mg/min; P less than 0.001), and inhibited the arginine-induced increase in plasma glucagon concentrations (P less than 0.001). Since CGRP and somatostatin are colocalized within the D-cells, we also infused CGRP and somatostatin together at equimolar dose levels (17 pmol/min), with glucose (7 mg/min). By that, the increase in plasma insulin concentrations decreased more rapidly than during infusion of either peptide alone. Since alpha 2-adrenoceptor activation is known to inhibit glucose-stimulated insulin secretion, we also infused CGRP together with the specific alpha 2-adrenoceptor antagonist yohimbine (37 nmol/min). In that way, the plasma insulin-lowering effect of CGRP was prevented. We have shown in the rat: (1) that CGRP stimulates basal insulin and glucagon secretion; (2) that CGRP inhibits stimulated insulin and glucagon secretion; (3) that CGRP and somatostatin more rapidly induce a potent inhibitory action on glucose-stimulated insulin secretion when given together; and (4) that the alpha 2-adrenoceptor antagonist, yohimbine, counteracts the inhibitory action of CGRP on glucose-stimulated insulin secretion. We suggest that CGRP is of importance for the regulation of insulin and glucagon secretion in the rat. The mechanisms behind the islet effects of CGRP can not be established by the present results, though they apparently require intact alpha 2-adrenoceptors.