Molecular basis of complement C3 deficiency in guinea pigs. 1990

H S Auerbach, and R Burger, and A Dodds, and H R Colten
Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110.

In experiments to ascertain the biochemical basis of a genetically determined deficiency of the third component of complement (C3) in guinea pigs, we found that C3-deficient liver and peritoneal macrophages contain C3 messenger RNA of normal size (approximately 5 kb) and amounts, that this mRNA programs synthesis of pro-C3 in oocytes primed with liver RNA and in primary macrophage cultures. In each instance, heterodimeric native C3 protein was secreted with normal kinetics but the C3 protein product of the deficient cells failed to undergo autolytic cleavage and was unusually susceptible to proteolysis. These data and a selective failure of C3 in plasma of deficient animals to incorporate [14C]methylamine suggested either a mutation in primary structure of the C3 protein or a selective defect in co- or postsynthetic processing affecting the thiolester bridge, a structure important for C3 function. A mutation in the primary structure of C3 was ruled out by comparison of direct sequence analysis of C3 cDNA generated from two C3 deficient and two C3 sufficient guinea pig liver libraries. Three base pair differences, none resulting in derived amino acid sequence differences were identified. Finally, restriction fragment length polymorphisms were identified in the C3 gene that are independent of the deficiency phenotype. This marker of the C3 gene permits testing of these hypotheses using molecular biological and classical genetic methods.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008744 Methylamines Derivatives of methylamine (the structural formula CH3NH2).
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D012150 Polymorphism, Restriction Fragment Length Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment. RFLP,Restriction Fragment Length Polymorphism,RFLPs,Restriction Fragment Length Polymorphisms
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003176 Complement C3 A glycoprotein that is central in both the classical and the alternative pathway of COMPLEMENT ACTIVATION. C3 can be cleaved into COMPLEMENT C3A and COMPLEMENT C3B, spontaneously at low level or by C3 CONVERTASE at high level. The smaller fragment C3a is an ANAPHYLATOXIN and mediator of local inflammatory process. The larger fragment C3b binds with C3 convertase to form C5 convertase. C3 Complement,C3 Precursor,Complement 3,Complement C3 Precursor,Complement Component 3,Precursor-Complement 3,Pro-C3,Pro-Complement 3,C3 Precursor, Complement,C3, Complement,Complement, C3,Component 3, Complement,Precursor Complement 3,Precursor, C3,Precursor, Complement C3,Pro C3,Pro Complement 3
D003181 Complement C4 A glycoprotein that is important in the activation of CLASSICAL COMPLEMENT PATHWAY. C4 is cleaved by the activated COMPLEMENT C1S into COMPLEMENT C4A and COMPLEMENT C4B. C4 Complement,C4 Complement Component,Complement 4,Complement C4, Precursor,Complement Component 4,Pro-C4,Pro-complement 4,C4, Complement,Complement Component, C4,Complement, C4,Component 4, Complement,Component, C4 Complement,Pro C4,Pro complement 4
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.

Related Publications

H S Auerbach, and R Burger, and A Dodds, and H R Colten
January 1986, European journal of immunology,
H S Auerbach, and R Burger, and A Dodds, and H R Colten
October 1990, The Journal of clinical investigation,
H S Auerbach, and R Burger, and A Dodds, and H R Colten
May 1985, Laboratory investigation; a journal of technical methods and pathology,
H S Auerbach, and R Burger, and A Dodds, and H R Colten
October 1990, The Journal of experimental medicine,
H S Auerbach, and R Burger, and A Dodds, and H R Colten
February 1999, Journal of immunology (Baltimore, Md. : 1950),
H S Auerbach, and R Burger, and A Dodds, and H R Colten
September 1956, Journal of the Indian Medical Association,
H S Auerbach, and R Burger, and A Dodds, and H R Colten
March 2024, Communications biology,
H S Auerbach, and R Burger, and A Dodds, and H R Colten
January 1937, The Indian medical gazette,
H S Auerbach, and R Burger, and A Dodds, and H R Colten
November 1995, Human genetics,
H S Auerbach, and R Burger, and A Dodds, and H R Colten
January 1995, Immunology,
Copied contents to your clipboard!