Molecular basis of hereditary C3 deficiency. 1990

M Botto, and K Y Fong, and A K So, and A Rudge, and M J Walport
Department of Medicine, Royal Postgraduate Medical School, London, United Kingdom.

Hereditary deficiency of complement component C3 in a 10-yr-old boy was studied. C3 could not be detected by RIA of serum from the patient. Segregation of C3 S and C3 F allotypes within the family confirmed the presence of a null gene for C3, for which the patient was homozygous. 30 exons have been characterized, spanning the entire beta chain of C3 and the alpha chain as far as the C3d region. Sequence analysis of the exons derived from the C3 null gene showed no abnormalities in the coding sequences. A GT-AT mutation at the 5' donor splice site of the intervening sequence 18 was found in the C3 null gene. Exons 17-21 were amplified by the polymerase chain reaction (PCR) from first-strand cDNA synthesized from mRNA obtained from peripheral blood monocytes stimulated with LPS. This revealed a 61-bp deletion in exon 18, resulting from splicing of a cryptic 5' donor splice site in exon 18 with the normal 3' splice site in exon 19. This deletion leads to a disturbance of the reading frame of the mRNA with a stop codon 17 bp downstream from the abnormal splice in exon 18. His parents had both the normal and abnormal C3 mRNA and were shown to be heterozygous for this mutation by sequence analysis of genomic DNA amplified by PCR. Similar splice mutants have previously been reported in the beta-globin, phenylalanine hydroxylase, and porphobilinogen deaminase genes. This mutation is sufficient to cause the deficiency of C3 in the patient.

UI MeSH Term Description Entries
D008297 Male Males
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D003176 Complement C3 A glycoprotein that is central in both the classical and the alternative pathway of COMPLEMENT ACTIVATION. C3 can be cleaved into COMPLEMENT C3A and COMPLEMENT C3B, spontaneously at low level or by C3 CONVERTASE at high level. The smaller fragment C3a is an ANAPHYLATOXIN and mediator of local inflammatory process. The larger fragment C3b binds with C3 convertase to form C5 convertase. C3 Complement,C3 Precursor,Complement 3,Complement C3 Precursor,Complement Component 3,Precursor-Complement 3,Pro-C3,Pro-Complement 3,C3 Precursor, Complement,C3, Complement,Complement, C3,Component 3, Complement,Precursor Complement 3,Precursor, C3,Precursor, Complement C3,Pro C3,Pro Complement 3
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012326 RNA Splicing The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm. RNA, Messenger, Splicing,Splicing, RNA,RNA Splicings,Splicings, RNA

Related Publications

M Botto, and K Y Fong, and A K So, and A Rudge, and M J Walport
August 1998, Immunobiology,
M Botto, and K Y Fong, and A K So, and A Rudge, and M J Walport
August 2017, Indian journal of pediatrics,
M Botto, and K Y Fong, and A K So, and A Rudge, and M J Walport
July 1990, The Journal of clinical investigation,
M Botto, and K Y Fong, and A K So, and A Rudge, and M J Walport
October 1996, Haemostasis,
M Botto, and K Y Fong, and A K So, and A Rudge, and M J Walport
September 1993, Blood,
M Botto, and K Y Fong, and A K So, and A Rudge, and M J Walport
February 1996, The Journal of clinical investigation,
M Botto, and K Y Fong, and A K So, and A Rudge, and M J Walport
April 2005, Biochemical and biophysical research communications,
M Botto, and K Y Fong, and A K So, and A Rudge, and M J Walport
July 1990, Rinsho byori. The Japanese journal of clinical pathology,
M Botto, and K Y Fong, and A K So, and A Rudge, and M J Walport
January 1991, Current studies in hematology and blood transfusion,
M Botto, and K Y Fong, and A K So, and A Rudge, and M J Walport
September 1986, The New England journal of medicine,
Copied contents to your clipboard!