Notch signaling functions as a cell-fate switch between the endothelial and hematopoietic lineages. 2009

Christina Y Lee, and Kevin M Vogeli, and Se-Hee Kim, and Shang-Wei Chong, and Yun-Jin Jiang, and Didier Y R Stainier, and Suk-Won Jin
McAllister Heart Institute, Department of Cell and Molecular Physiology, and Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

Recent studies have begun to elucidate how the endothelial lineage is specified from the nascent mesoderm. However, the molecular mechanisms which regulate this process remain largely unknown. We hypothesized that Notch signaling might play an important role in specifying endothelial progenitors from the mesoderm, given that this pathway acts as a bipotential cell-fate switch on equipotent progenitor populations in other settings. We found that zebrafish embryos with decreased levels of Notch signaling exhibited a significant increase in the number of endothelial cells, whereas embryos with increased levels of Notch signaling displayed a reduced number of endothelial cells. Interestingly, there is a concomitant gain of endothelial cells and loss of erythrocytes in embryos with decreased Notch activity, without an effect on cell proliferation or apoptosis. Lineage-tracing analyses indicate that the ectopic endothelial cells in embryos with decreased Notch activity originate from mesodermal cells that normally produce erythrocyte progenitors. Taken together, our data suggest that Notch signaling negatively regulates the number of endothelial cells by limiting the number of endothelial progenitors within the mesoderm, probably functioning as a cell-fate switch between the endothelial and the hematopoietic lineages.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D001973 Bromodeoxyuridine A nucleoside that substitutes for thymidine in DNA and thus acts as an antimetabolite. It causes breaks in chromosomes and has been proposed as an antiviral and antineoplastic agent. It has been given orphan drug status for use in the treatment of primary brain tumors. BUdR,BrdU,Bromouracil Deoxyriboside,Broxuridine,5-Bromo-2'-deoxyuridine,5-Bromodeoxyuridine,NSC-38297,5 Bromo 2' deoxyuridine,5 Bromodeoxyuridine,Deoxyriboside, Bromouracil
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004121 Dimethyl Sulfoxide A highly polar organic liquid, that is used widely as a chemical solvent. Because of its ability to penetrate biological membranes, it is used as a vehicle for topical application of pharmaceuticals. It is also used to protect tissue during CRYOPRESERVATION. Dimethyl sulfoxide shows a range of pharmacological activity including analgesia and anti-inflammation. DMSO,Dimethyl Sulphoxide,Dimethylsulfoxide,Dimethylsulphinyl,Dimethylsulphoxide,Dimexide,Rheumabene,Rimso,Rimso 100,Rimso-50,Sclerosol,Sulfinylbis(methane),Rimso 50,Rimso50,Sulfoxide, Dimethyl,Sulphoxide, Dimethyl
D004151 Dipeptides Peptides composed of two amino acid units. Dipeptide
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Christina Y Lee, and Kevin M Vogeli, and Se-Hee Kim, and Shang-Wei Chong, and Yun-Jin Jiang, and Didier Y R Stainier, and Suk-Won Jin
October 2017, Journal of immunology (Baltimore, Md. : 1950),
Christina Y Lee, and Kevin M Vogeli, and Se-Hee Kim, and Shang-Wei Chong, and Yun-Jin Jiang, and Didier Y R Stainier, and Suk-Won Jin
November 2006, Genes & development,
Christina Y Lee, and Kevin M Vogeli, and Se-Hee Kim, and Shang-Wei Chong, and Yun-Jin Jiang, and Didier Y R Stainier, and Suk-Won Jin
April 2014, PLoS genetics,
Christina Y Lee, and Kevin M Vogeli, and Se-Hee Kim, and Shang-Wei Chong, and Yun-Jin Jiang, and Didier Y R Stainier, and Suk-Won Jin
August 2021, Stem cell reviews and reports,
Christina Y Lee, and Kevin M Vogeli, and Se-Hee Kim, and Shang-Wei Chong, and Yun-Jin Jiang, and Didier Y R Stainier, and Suk-Won Jin
September 2007, Journal of gastroenterology,
Christina Y Lee, and Kevin M Vogeli, and Se-Hee Kim, and Shang-Wei Chong, and Yun-Jin Jiang, and Didier Y R Stainier, and Suk-Won Jin
March 2004, Development (Cambridge, England),
Christina Y Lee, and Kevin M Vogeli, and Se-Hee Kim, and Shang-Wei Chong, and Yun-Jin Jiang, and Didier Y R Stainier, and Suk-Won Jin
December 1994, Developmental biology,
Christina Y Lee, and Kevin M Vogeli, and Se-Hee Kim, and Shang-Wei Chong, and Yun-Jin Jiang, and Didier Y R Stainier, and Suk-Won Jin
April 2011, Blood,
Christina Y Lee, and Kevin M Vogeli, and Se-Hee Kim, and Shang-Wei Chong, and Yun-Jin Jiang, and Didier Y R Stainier, and Suk-Won Jin
February 2018, Cell research,
Christina Y Lee, and Kevin M Vogeli, and Se-Hee Kim, and Shang-Wei Chong, and Yun-Jin Jiang, and Didier Y R Stainier, and Suk-Won Jin
July 2008, Current opinion in hematology,
Copied contents to your clipboard!