Mechanisms generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices. 1990

S Hestrin, and P Sah, and R A Nicoll
Department of Physiology, University of California, San Francisco 94143.

We studied with the whole-cell recording techniques, the mechanisms underlying the time course of the slow N-methyl-D-aspartate (NMDA), and fast non-NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) in hippocampal slices. The rising phase of the NMDA receptor-mediated component of the EPSC as well as the decaying phase of the NMDA and non-NMDA component were highly temperature-sensitive, suggesting that neither of these processes is determined by free diffusion of transmitter. Moreover, glutamate uptake blockers enhanced the responses to exogenously applied glutamate, but had no effect on the decay of either the NMDA or non-NMDA components of the EPSCs. On the other hand, open channel blockers known to modify NMDA channel kinetics reduced the EPSC decay time. Thus, the present results support a model in which the rise time and decay of the NMDA component are determined primarily by slow channel kinetics and the decay of the non-NMDA component is due either to channel kinetics or to desensitization.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D007649 Ketamine A cyclohexanone derivative used for induction of anesthesia. Its mechanism of action is not well understood, but ketamine can block NMDA receptors (RECEPTORS, N-METHYL-D-ASPARTATE) and may interact with sigma receptors. 2-(2-Chlorophenyl)-2-(methylamino)cyclohexanone,CI-581,Calipsol,Calypsol,Kalipsol,Ketalar,Ketamine Hydrochloride,Ketanest,Ketaset,CI 581,CI581
D003986 Dibenzocycloheptenes A family of tricyclic hydrocarbons whose members include many of the commonly used tricyclic antidepressants (ANTIDEPRESSIVE AGENTS, TRICYCLIC).
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

S Hestrin, and P Sah, and R A Nicoll
July 1992, Journal of neurophysiology,
S Hestrin, and P Sah, and R A Nicoll
April 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S Hestrin, and P Sah, and R A Nicoll
January 1995, Annual review of physiology,
S Hestrin, and P Sah, and R A Nicoll
January 1995, The Journal of physiology,
S Hestrin, and P Sah, and R A Nicoll
June 1990, Brain research,
S Hestrin, and P Sah, and R A Nicoll
January 1994, Neuroscience letters,
S Hestrin, and P Sah, and R A Nicoll
March 2002, Journal of neurophysiology,
Copied contents to your clipboard!