Synaptic potentiation of dual-component excitatory postsynaptic currents in the rat hippocampus. 1995

K A Clark, and G L Collingridge
Department of Pharmacology, Medical School, University of Birmingham, Edgbaston, UK.

1. Whole-cell patch-clamp recording has been used to study tetanus-induced synaptic potentiation of dual-component excitatory postsynaptic currents (EPSCs) in the CA1 region of rat hippocampal slices, following blockade of GABAA and GABAB receptor-mediated synaptic inhibition. 2. At a holding potential of -60 mV, the initial slope of the EPSC (between 10 and 60% of maximum amplitude) provided an accurate measurement of the AMPA receptor-mediated component, and the amplitude of the EPSC at a latency of 100 ms provided the best estimate of the size of the NMDA receptor-mediated component. 3. Neurons were voltage clamped for at least 45 min prior to delivery of a tetanus (test intensity, 100 Hz, 1 s). Measurements at 10 and 30 min following the tetanus were used as indications of short-term potentiation (STP) and long-term potentiation (LTP), respectively. One set of neurons were voltage clamped at -60 mV throughout. These neurons could be subdivided into two populations on the basis of whether or not there was LTP (n = 9), or only STP (n = 6), of the AMPA receptor-mediated component. A second set of neurons were voltage clamped at -60 mV for 30 min and then at -50 mV for 15 min before, during and for 30 min following tetanization. In these experiments there was STP but not LTP (n = 8). 4. In all neurons (n = 23), the time course of the potentiation of the NMDA receptor-mediated component paralleled that of the AMPA receptor-mediated component. In addition, potentiation of the NMDA and AMPA receptor-mediated components were of a similar magnitude. 5. These data demonstrate that it is possible to induce LTP by high frequency stimulation after 45 min of whole-cell recording. Under these conditions, there is a parallel potentiation of the AMPA and NMDA receptor-mediated components of dual-component EPSCs. This constitutes the first evidence, from studies of dual-component synaptic responses, which is consistent with a presynaptic locus of expression of tetanus-induced STP and LTP in the hippocampus.

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010852 Picrotoxin A mixture of PICROTOXININ and PICROTIN that is a noncompetitive antagonist at GABA-A receptors acting as a convulsant. Picrotoxin blocks the GAMMA-AMINOBUTYRIC ACID-activated chloride ionophore. Although it is most often used as a research tool, it has been used as a CNS stimulant and an antidote in poisoning by CNS depressants, especially the barbiturates. 3,6-Methano-8H-1,5,7-trioxacyclopenta(ij)cycloprop(a)azulene-4,8(3H)-dione, hexahydro-2a-hydroxy-9-(1-hydroxy-1-methylethyl)-8b-methyl-, (1aR-(1aalpha,2abeta,3beta,6beta,6abeta,8aS*,8bbeta,9S*))-, compd. with (1aR-(1aalpha,2abeta,3beta,6beta,6abeta,8,Cocculin
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D017774 Long-Term Potentiation A persistent increase in synaptic efficacy, usually induced by appropriate activation of the same synapses. The phenomenological properties of long-term potentiation suggest that it may be a cellular mechanism of learning and memory. Long Term Potentiation,Long-Term Potentiations,Potentiation, Long-Term,Potentiations, Long-Term

Related Publications

K A Clark, and G L Collingridge
July 1992, Journal of neurophysiology,
K A Clark, and G L Collingridge
December 1993, The Journal of physiology,
K A Clark, and G L Collingridge
April 1991, The Journal of physiology,
K A Clark, and G L Collingridge
May 1991, Biulleten' eksperimental'noi biologii i meditsiny,
Copied contents to your clipboard!