Phosphatidylinositol (4,5)-bisphosphate regulation of N-methyl-D-aspartate receptor channels in cortical neurons. 2009

Madhuchhanda Mandal, and Zhen Yan
Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA.

The membrane phospholipid phosphatidylinositol (4,5)-bisphosphate (PIP(2)) has been implicated in the regulation of several ion channels and transporters. In this study, we examined the impact of PIP(2) on N-methyl-D-aspartate receptors (NMDARs) in cortical neurons. Blocking PIP(2) synthesis by inhibiting phosphoinositide-4 kinase, or stimulating PIP(2) hydrolysis via activation of phospholipase C (PLC), or blocking PIP(2) function with an antibody caused a significant reduction of NMDAR-mediated currents. On the other hand, inhibition of PLC or application of PIP(2) caused an enhancement of NMDAR currents. These electrophysiological effects were accompanied by changes in NMDAR surface clusters induced by agents that manipulate PIP(2) levels. The PIP(2) regulation of NMDAR currents was abolished by the dynamin inhibitory peptide, which blocks receptor internalization. Agents perturbing actin stability prevented PIP(2) regulation of NMDAR currents, suggesting the actin-dependence of this effect of PIP(2). Cofilin, a major actin depolymerizing factor, which has a common binding sequence for actin and PIP(2), was required for PIP(2) regulation of NMDAR currents. It is noteworthy that the PIP(2) regulation of NMDAR channels was impaired in a transgenic mouse model of Alzheimer's disease, probably because of the amyloid-beta disruption of PIP(2) metabolism. Taken together, our data suggest that continuous synthesis of PIP(2) at the membrane might be important for the maintenance of NMDARs at the cell surface. When PIP(2) is lost, cofilin is released from the PIP(2) complex and is rendered free to depolymerize actin. With the actin cytoskeleton no longer intact, NMDARs are internalized via a dynamin/clathrin-dependent mechanism, leading to reduced NMDAR currents.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females
D000077191 Wortmannin An androstadiene metabolite produced by the fungi PENICILLIUM funiculosum that inhibits PHOSPHATIDYLINOSITOL-3-KINASES and alloantigen-specific activation of T-LYMPHOCYTES in human tumor cell lines. It is widely used in CELL BIOLOGY research and has broad therapeutic potential. MS 54,MS-54,MS54

Related Publications

Madhuchhanda Mandal, and Zhen Yan
August 2005, The Journal of biological chemistry,
Madhuchhanda Mandal, and Zhen Yan
January 1995, Annual review of pharmacology and toxicology,
Madhuchhanda Mandal, and Zhen Yan
June 2005, Current opinion in neurobiology,
Madhuchhanda Mandal, and Zhen Yan
June 2005, The Journal of biological chemistry,
Madhuchhanda Mandal, and Zhen Yan
January 2007, Handbook of experimental pharmacology,
Madhuchhanda Mandal, and Zhen Yan
September 2018, Biochemical and biophysical research communications,
Madhuchhanda Mandal, and Zhen Yan
May 1993, Molecular pharmacology,
Madhuchhanda Mandal, and Zhen Yan
May 2010, The Journal of experimental biology,
Madhuchhanda Mandal, and Zhen Yan
August 2007, The Journal of physiology,
Copied contents to your clipboard!