Polyamine regulation of N-methyl-D-aspartate receptor channels. 1995

D M Rock, and R L Macdonald
Parke-Davis Research, Ann Arbor, Michigan 48105, USA.

Endogenous polyamines such as spermine and spermidine have multiple effects in the central nervous system and have been suggested to be neurotransmitters or neuromodulators. One effect of the polyamines is to regulate the activity of the N-methyl-D-aspartate receptor (NMDAR) channel subtype of glutamate receptor channels. The effects of polyamines on NMDAR currents are complex, suggesting the presence of one or more polyamine-binding sites on the receptor channel. Electrophysiological studies have shown that polyamines enhance NMDAR currents by increasing channel opening frequency and by increasing the affinity of the receptor for glycine. Polyamines have been shown to reduce NMDAR currents by producing voltage-dependent reduction of single-channel amplitudes and/or by producing an open channel block. Recent molecular biological studies have shown that the polyamine effects on NMDAR channels involve interactions with multiple NMDAR subunits and are characterizing the structural basis for the polyamine regulation of NMDAT receptor channels.

UI MeSH Term Description Entries
D011073 Polyamines Amine compounds that consist of carbon chains or rings containing two or more primary amino groups. Polyamine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate

Related Publications

D M Rock, and R L Macdonald
August 2005, The Journal of biological chemistry,
D M Rock, and R L Macdonald
October 2003, Journal of neurochemistry,
D M Rock, and R L Macdonald
August 2005, Neuroscience research,
D M Rock, and R L Macdonald
February 2002, Anesthesia and analgesia,
D M Rock, and R L Macdonald
June 2010, Chemical & pharmaceutical bulletin,
D M Rock, and R L Macdonald
June 1999, Biophysical journal,
Copied contents to your clipboard!