Effect of epidermal growth factor and dexamethasone on fetal rat lung development. 2009

Lian Ma, and Ai-hong Wang, and Law Frieda, and Hong-yan He, and Gui-xia Ma, and Hong-wu Wang, and Li-min Lin
Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China.

BACKGROUND Epidermal growth factor (EGF), a mitogenic polypeptide that binds to cell surface receptors, is an important regulator of cell differentiation and fetal lung surfactant synthesis. We investigated the preventive and therapeutic effects of EGF in respiratory distress syndrome, by administering EGF and dexamethasone (Dex) to mother rat before delivery. METHODS Six female Sprague-Dawley (SD) rats were assigned to three groups (2 rats each); EGF or Dex was given to pregnant rats (EGF group and Dex group, respectively) from gestational day 16 to day 18 by intraperitoneal injection, while the group with normal saline injection was used as negative controls. Fetal rats were taken out of womb by hysterotomy on day 19 of pregnancy, then 24 fetal rats were randomly chosen from each group. Their body weights were measured, and pulmonary surfactant protein-A and -B (SP-A and SP-B) antigens were determined by immunohistochemical staining in each group. The histologic structure was examined under a light microscope, a light microscopic image system or an electron microscope. RESULTS The expressions of SP-A and SP-B could be detected in each group. A significant difference was observed for SP-A and SP-B in the EGF and Dex groups compared with the control group (P < 0.01). Image analysis showed that the relative values of air space area and interalveolar septa area in the EGF and Dex groups were significantly greater than those in the control group (P < 0.01), while no significant difference was found between the two groups (P > 0.05). The ultrastructural features of fetal lungs showed that the number of alveolar type II cells containing lamellar bodies in the EGF and Dex groups was apparently increased compared with that in the control group. The mean body weight of fetus from the Dex group was smaller than that from the control group ((1.3192 +/- 0.0533) g, (1.3863 +/- 0.0373) g), but there was no significant difference between the EGF group and the control group ((1.3986 +/- 0.0730) g, (1.3863 +/- 0.0373) g). CONCLUSIONS Maternal treatment with EGF and Dex on days 16 - 18 of gestation could promote morphogenesis and increase the surfactant levels in premature fetal lung. However, maternal treatment with Dex, not EGF, decreased the body weight.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D046529 Microscopy, Electron, Transmission Electron microscopy in which the ELECTRONS or their reaction products that pass down through the specimen are imaged below the plane of the specimen. Electron Diffraction Microscopy,Electron Microscopy, Transmission,Microscopy, Electron Diffraction,Transmission Electron Microscopy,Diffraction Microscopy, Electron,Microscopy, Transmission Electron
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Lian Ma, and Ai-hong Wang, and Law Frieda, and Hong-yan He, and Gui-xia Ma, and Hong-wu Wang, and Li-min Lin
May 1986, Pediatric research,
Lian Ma, and Ai-hong Wang, and Law Frieda, and Hong-yan He, and Gui-xia Ma, and Hong-wu Wang, and Li-min Lin
August 1995, Biochimica et biophysica acta,
Lian Ma, and Ai-hong Wang, and Law Frieda, and Hong-yan He, and Gui-xia Ma, and Hong-wu Wang, and Li-min Lin
February 1979, Pediatric research,
Lian Ma, and Ai-hong Wang, and Law Frieda, and Hong-yan He, and Gui-xia Ma, and Hong-wu Wang, and Li-min Lin
January 2000, Early human development,
Lian Ma, and Ai-hong Wang, and Law Frieda, and Hong-yan He, and Gui-xia Ma, and Hong-wu Wang, and Li-min Lin
June 1989, Molecular endocrinology (Baltimore, Md.),
Lian Ma, and Ai-hong Wang, and Law Frieda, and Hong-yan He, and Gui-xia Ma, and Hong-wu Wang, and Li-min Lin
December 1986, Journal of developmental physiology,
Lian Ma, and Ai-hong Wang, and Law Frieda, and Hong-yan He, and Gui-xia Ma, and Hong-wu Wang, and Li-min Lin
September 1998, Chinese medical journal,
Lian Ma, and Ai-hong Wang, and Law Frieda, and Hong-yan He, and Gui-xia Ma, and Hong-wu Wang, and Li-min Lin
September 1989, The Tohoku journal of experimental medicine,
Lian Ma, and Ai-hong Wang, and Law Frieda, and Hong-yan He, and Gui-xia Ma, and Hong-wu Wang, and Li-min Lin
January 1996, Zhonghua er bi yan hou ke za zhi,
Lian Ma, and Ai-hong Wang, and Law Frieda, and Hong-yan He, and Gui-xia Ma, and Hong-wu Wang, and Li-min Lin
June 2004, Journal of pediatric surgery,
Copied contents to your clipboard!