Influence of epidermal growth factor on fetal rat lung development in vitro. 1986

I Gross, and D W Dynia, and S A Rooney, and D A Smart, and J B Warshaw, and J F Sissom, and S B Hoath

Epidermal growth factor (EGF) has been shown to enhance cell multiplication or differentiation in a number of developing tissues. We have examined the effects of this growth factor on the biochemical development of explants of fetal rat lung, cultured in serum-free medium for 48 h. EGF enhanced the rate of choline incorporation into phosphatidylcholine and disaturated phosphatidylcholine in a dose dependent fashion. Half maximal stimulation occurred at a concentration of 1.0 nM, similar to the Kd for EGF binding to rat lung cell membranes. There was also significant stimulation of acetate incorporation into all phospholipids, particularly phosphatidylglycerol (539%), and increased distribution of radioactivity from acetate in this phospholipid fraction. Exposure to EGF stimulated PC synthesis in 18- and 19-day explants (term is 22 days) whereas maximal enhancement of DNA synthesis occurred after this time. This sequence differs from that observed during early embryonic development when EGF initially enhances cell multiplication. An additive interaction with regard to enhancement of PC synthesis was observed with EGF and thyroid hormone, but not EGF and dexamethasone. EGF had no effect on the activity of the enzymes of the choline incorporation pathway of phosphatidylcholine synthesis or on the activity of enzymes involved with acidic phospholipid synthesis. Fetal lung EGF content and EGF binding capacity were not increased by glucocorticoid treatment and similarly glucocorticoid binding capacity was not increased by EGF. These data indicate that EGF enhances fetal rat lung phospholipid synthesis in a dose-dependent manner and suggest that this is a direct effect on the lung tissue mediated by specific receptors.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013268 Stimulation, Chemical The increase in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Stimulation,Chemical Stimulations,Stimulations, Chemical

Related Publications

I Gross, and D W Dynia, and S A Rooney, and D A Smart, and J B Warshaw, and J F Sissom, and S B Hoath
September 2009, Chinese medical journal,
I Gross, and D W Dynia, and S A Rooney, and D A Smart, and J B Warshaw, and J F Sissom, and S B Hoath
January 1995, Experimental lung research,
I Gross, and D W Dynia, and S A Rooney, and D A Smart, and J B Warshaw, and J F Sissom, and S B Hoath
February 1979, Pediatric research,
I Gross, and D W Dynia, and S A Rooney, and D A Smart, and J B Warshaw, and J F Sissom, and S B Hoath
September 1980, The American journal of pathology,
I Gross, and D W Dynia, and S A Rooney, and D A Smart, and J B Warshaw, and J F Sissom, and S B Hoath
January 1985, Scanning electron microscopy,
I Gross, and D W Dynia, and S A Rooney, and D A Smart, and J B Warshaw, and J F Sissom, and S B Hoath
January 1991, Histochemistry,
I Gross, and D W Dynia, and S A Rooney, and D A Smart, and J B Warshaw, and J F Sissom, and S B Hoath
January 2000, Early human development,
I Gross, and D W Dynia, and S A Rooney, and D A Smart, and J B Warshaw, and J F Sissom, and S B Hoath
January 1990, Journal of developmental physiology,
I Gross, and D W Dynia, and S A Rooney, and D A Smart, and J B Warshaw, and J F Sissom, and S B Hoath
January 1999, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
I Gross, and D W Dynia, and S A Rooney, and D A Smart, and J B Warshaw, and J F Sissom, and S B Hoath
December 1986, Journal of developmental physiology,
Copied contents to your clipboard!