Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes. 2009

Sara Rodriguez-Enriquez, and Yoichiro Kai, and Eduardo Maldonado, and Robert T Currin, and John J Lemasters
Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC, USA.

In primary culture, hepatocytes dedifferentiate, and their cytoplasm undergoes remodeling. Here, our aim was to characterize changes of mitochondria during remodeling. Hepatocytes were cultured one to five days in complete serumcontaining Waymouth's medium. In rat hepatocytes loaded with MitoTracker Green (MTG), tetramethylrhodamine methylester (TMRM), and/or LysoTracker Red (LTR), confocal microscopy revealed that mitochondria number and mass decreased by approximately 50% between Day 1 and Day 3 of culture. As mitochondria disappeared, lysosomes/autophagosomes proliferated five-fold. Decreased mitochondrial content correlated with (a) decreased cytochrome c oxidase activity and mitochondrial number observed by electron microscopy and (b) a profound decrease of PGC-1alpha mRNA expression. By contrast, mtDNA content per cell remained constant from the first to the third day of culture, although ethidium bromide (de novo mtDNA synthesis inhibitor) caused mtDNA to decrease by half from the first to the third culture day. As mitochondria disappeared, their MTG label moved into LTR-labeled lysosomes, which was indicative of autophagic degradation. A multiwell fluorescence assay revealed a 2.5-fold increase of autophagy on Day 3 of culture, which was decreased by 3-methyladenine, an inhibitor of autophagy, and also by cyclosporin A and NIM811, both selective inhibitors of the mitochondrial permeability transition (MPT). These findings indicate that mitochondrial autophagy (mitophagy) and the MPT underlie mitochondrial remodeling in cultured hepatocytes.

UI MeSH Term Description Entries
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008297 Male Males
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D010588 Phagosomes Membrane-bound cytoplasmic vesicles formed by invagination of phagocytized material. They fuse with lysosomes to form phagolysosomes in which the hydrolytic enzymes of the lysosome digest the phagocytized material. Phagolysosomes,Phagolysosome,Phagosome
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression

Related Publications

Sara Rodriguez-Enriquez, and Yoichiro Kai, and Eduardo Maldonado, and Robert T Currin, and John J Lemasters
April 2004, Journal of hepatology,
Sara Rodriguez-Enriquez, and Yoichiro Kai, and Eduardo Maldonado, and Robert T Currin, and John J Lemasters
October 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Sara Rodriguez-Enriquez, and Yoichiro Kai, and Eduardo Maldonado, and Robert T Currin, and John J Lemasters
November 2004, Hepatology (Baltimore, Md.),
Sara Rodriguez-Enriquez, and Yoichiro Kai, and Eduardo Maldonado, and Robert T Currin, and John J Lemasters
January 2009, Archives of biochemistry and biophysics,
Sara Rodriguez-Enriquez, and Yoichiro Kai, and Eduardo Maldonado, and Robert T Currin, and John J Lemasters
December 1997, The American journal of physiology,
Sara Rodriguez-Enriquez, and Yoichiro Kai, and Eduardo Maldonado, and Robert T Currin, and John J Lemasters
December 1997, Toxicology and applied pharmacology,
Sara Rodriguez-Enriquez, and Yoichiro Kai, and Eduardo Maldonado, and Robert T Currin, and John J Lemasters
July 1993, The Journal of biological chemistry,
Sara Rodriguez-Enriquez, and Yoichiro Kai, and Eduardo Maldonado, and Robert T Currin, and John J Lemasters
August 2001, Biochemical and biophysical research communications,
Sara Rodriguez-Enriquez, and Yoichiro Kai, and Eduardo Maldonado, and Robert T Currin, and John J Lemasters
August 2001, Hepatology (Baltimore, Md.),
Sara Rodriguez-Enriquez, and Yoichiro Kai, and Eduardo Maldonado, and Robert T Currin, and John J Lemasters
February 2017, Journal of bioenergetics and biomembranes,
Copied contents to your clipboard!