Deletions at the N terminus of bacteriophage phi 29 protein p6: DNA binding and activity in phi 29 DNA replication. 1990

M J Otero, and J M Lázaro, and M Salas
Centro de Biología Molecular (CSIC-UAM), Universidad Autónoma, Madrid, Spain.

Deletions corresponding to the first 5 or 13 amino acids (aa), not counting the initial Met, have been introduced into the N terminus of the phage phi 29 protein p6. The activity of such proteins in the in vitro phi 29 DNA replication system, their capacity to interact with the phi 29 DNA ends, and their interference with the wild type (wt) protein p6 activity have been studied. The initiation activity of protein p6 decreased considerably when 5 as were deleted and was undetectable when 13 aa were removed. The mutant proteins were unable to specifically interact with the phi 29 DNA ends. These results indicate the need of an intact N terminus for the activity of protein p6. However, such N-truncated proteins inhibited both the specific binding of the wt protein p6 to the phi 29 DNA ends and its activity in phi 29 DNA replication.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D012150 Polymorphism, Restriction Fragment Length Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment. RFLP,Restriction Fragment Length Polymorphism,RFLPs,Restriction Fragment Length Polymorphisms
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral

Related Publications

M J Otero, and J M Lázaro, and M Salas
January 1988, Proceedings of the National Academy of Sciences of the United States of America,
M J Otero, and J M Lázaro, and M Salas
August 1995, FEMS microbiology reviews,
M J Otero, and J M Lázaro, and M Salas
September 1982, Proceedings of the National Academy of Sciences of the United States of America,
M J Otero, and J M Lázaro, and M Salas
February 1991, The Journal of biological chemistry,
M J Otero, and J M Lázaro, and M Salas
May 1990, Journal of molecular biology,
M J Otero, and J M Lázaro, and M Salas
September 1984, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!