Mechanisms underlying presynaptic inhibition through alpha 2-adrenoceptors in guinea-pig submucosal neurones. 1990

K Z Shen, and A Surprenant
Vollum Institute, Oregon Health Sciences University, Portland 97201.

1. Intracellular recordings were made from submucosal neurones of the guinea-pig ileum. The actions of noradrenaline, somatostatin and [Met5]enkephalin on nicotinic synaptic potentials (EPSPs) were studied. 2. In one series of experiments, agonists were applied by superfusion; noradrenaline (0.1-20 microM) decreased EPSP amplitude by 95-100% in all neurones. Similar application of somatostatin (1-100 nM) inhibited EPSPs in about half the neurones by a maximum of 40%. [Met5]enkephalin (0.1-10 microM) did not alter EPSPs. Idazoxan and yohimbine competitively antagonized the action of noradrenaline with dissociation equilibrium constants of 20 and 30 nM respectively. 3. In another series of experiments, noradrenaline and somatostatin were applied locally from a pipette so that they reached presynaptic terminals but not the cell bodies or axons of the presynaptic cell: noradrenaline inhibited EPSPs by 90% in all neurones but somatostatin had no effect. When applied locally to the cell bodies giving rise to the presynaptic fibres, both agonists inhibited EPSPs in half the neurones by 40%. 4. When noradrenaline was applied locally to presynaptic terminals, the latency to onset of noradrenaline to inhibit EPSPs was 45-160 ms; cadmium applied similarly depressed EPSPs in 5-50 ms. 5. Pertussis toxin pre-treatment only partially blocked presynaptic inhibition caused by noradrenaline but abolished the reduction of EPSP amplitude by somatostatin. 6. It is concluded that noradrenaline and somatostatin reduce the amplitude of the fast EPSP because they hyperpolarize cell bodies and prevent action potential initiation. Noradrenaline, but not somatostatin, has an additional action to inhibit acetylcholine release by acting at nerve terminal receptors. 7. The presynaptic inhibitory action of noradrenaline results from activation of alpha 2-adrenoceptors at nerve terminals but the mechanism(s) by which these presynaptic receptors act cannot be explained adequately by either activation of a potassium conductance and/or inhibition of a calcium conductance.

UI MeSH Term Description Entries
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D011941 Receptors, Adrenergic Cell-surface proteins that bind epinephrine and/or norepinephrine with high affinity and trigger intracellular changes. The two major classes of adrenergic receptors, alpha and beta, were originally discriminated based on their cellular actions but now are distinguished by their relative affinity for characteristic synthetic ligands. Adrenergic receptors may also be classified according to the subtypes of G-proteins with which they bind; this scheme does not respect the alpha-beta distinction. Adrenergic Receptors,Adrenoceptor,Adrenoceptors,Norepinephrine Receptor,Receptors, Epinephrine,Receptors, Norepinephrine,Adrenergic Receptor,Epinephrine Receptors,Norepinephrine Receptors,Receptor, Adrenergic,Receptor, Norepinephrine
D004744 Enkephalin, Methionine One of the endogenous pentapeptides with morphine-like activity. It differs from LEU-ENKEPHALIN by the amino acid METHIONINE in position 5. Its first four amino acid sequence is identical to the tetrapeptide sequence at the N-terminal of BETA-ENDORPHIN. Methionine Enkephalin,5-Methionine Enkephalin,Met(5)-Enkephalin,Met-Enkephalin,5 Methionine Enkephalin,Enkephalin, 5-Methionine,Met Enkephalin
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000317 Adrenergic alpha-Antagonists Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma. Adrenergic alpha-Receptor Blockaders,alpha-Adrenergic Blocking Agents,alpha-Adrenergic Receptor Blockaders,alpha-Blockers, Adrenergic,Adrenergic alpha-Blockers,alpha-Adrenergic Antagonists,alpha-Adrenergic Blockers,Adrenergic alpha Antagonists,Adrenergic alpha Blockers,Adrenergic alpha Receptor Blockaders,Agents, alpha-Adrenergic Blocking,Antagonists, alpha-Adrenergic,Blockaders, Adrenergic alpha-Receptor,Blockaders, alpha-Adrenergic Receptor,Blockers, alpha-Adrenergic,Blocking Agents, alpha-Adrenergic,Receptor Blockaders, alpha-Adrenergic,alpha Adrenergic Antagonists,alpha Adrenergic Blockers,alpha Adrenergic Blocking Agents,alpha Adrenergic Receptor Blockaders,alpha Blockers, Adrenergic,alpha-Antagonists, Adrenergic,alpha-Receptor Blockaders, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K Z Shen, and A Surprenant
November 1987, European journal of pharmacology,
K Z Shen, and A Surprenant
July 1995, Naunyn-Schmiedeberg's archives of pharmacology,
K Z Shen, and A Surprenant
January 1989, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
K Z Shen, and A Surprenant
March 1990, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
K Z Shen, and A Surprenant
June 1985, Archives internationales de pharmacodynamie et de therapie,
K Z Shen, and A Surprenant
January 1990, Acta physiologica Hungarica,
Copied contents to your clipboard!