Effects of phospholipase A2 inhibitors on coupling of alpha 2-adrenoceptors to inwardly rectifying potassium currents in guinea-pig submucosal neurones. 1993

R J Evans, and A Surprenant
Vollum Institute, Oregon Health Sciences University, Portland 97201.

1. Noradrenaline hyperpolarizes guinea-pig submucosal neurones by opening inwardly rectifying potassium channels. Intracellular recordings were made from submucosal neurones and the possible involvement of the phospholipase A2 pathway in this response was examined. 2. The non-specific phospholipase A2 inhibitors, quinacrine (10 microM) and 4-bromophenacyl bromide (4-BPB, 10 microM) inhibited nerve-evoked inhibitory synaptic potentials (i.p.s.ps) and hyperpolarizations to somatostatin and UK 14304. Quinacrine and 4-BPB also blocked the inward rectification present in current-voltage curves in the absence of somatostatin or UK 14304. 3. The more selective phospholipase A2 inhibitor, cyclosporin A (10 microM) and the lipoxygenase and cyclo-oxygenase inhibitor, eicosatetraynoic acid (ETYA, 20 microM) and nordihydroguairetic acid (NDGA, 20 microM) did not alter i.p.s.ps or hyperpolarizations to UK 14304. 4. Exogenously applied arachidonic acid (1-300 microM) did not mimic the i.p.s.p. or the hyperpolarization to UK 14304. 5. We conclude that arachidonic acid or its eicosanoid metabolites produced by phospholipase A2 stimulation are unlikely to be involved in the receptor G-protein coupled activation of potassium currents in submucosal neurones. The inhibition of the noradrenaline-induced hyperpolarization by quinacrine and 4-BPB is most likely due primarily to blockade of the basal inwardly rectifying potassium conductance present in these neurones.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007478 Iontophoresis Therapeutic introduction of ions of soluble salts into tissues by means of electric current. In medical literature it is commonly used to indicate the process of increasing the penetration of drugs into surface tissues by the application of electric current. It has nothing to do with ION EXCHANGE; AIR IONIZATION nor PHONOPHORESIS, none of which requires current. Iontophoreses
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010741 Phospholipases A Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000316 Adrenergic alpha-Agonists Drugs that selectively bind to and activate alpha adrenergic receptors. Adrenergic alpha-Receptor Agonists,alpha-Adrenergic Receptor Agonists,Adrenergic alpha-Agonist,Adrenergic alpha-Receptor Agonist,Receptor Agonists, Adrenergic alpha,Receptor Agonists, alpha-Adrenergic,alpha-Adrenergic Agonist,alpha-Adrenergic Agonists,alpha-Adrenergic Receptor Agonist,Adrenergic alpha Agonist,Adrenergic alpha Agonists,Adrenergic alpha Receptor Agonist,Adrenergic alpha Receptor Agonists,Agonist, Adrenergic alpha-Receptor,Agonist, alpha-Adrenergic,Agonist, alpha-Adrenergic Receptor,Agonists, Adrenergic alpha-Receptor,Agonists, alpha-Adrenergic,Agonists, alpha-Adrenergic Receptor,Receptor Agonist, alpha-Adrenergic,Receptor Agonists, alpha Adrenergic,alpha Adrenergic Agonist,alpha Adrenergic Agonists,alpha Adrenergic Receptor Agonist,alpha Adrenergic Receptor Agonists,alpha-Agonist, Adrenergic,alpha-Agonists, Adrenergic,alpha-Receptor Agonist, Adrenergic,alpha-Receptor Agonists, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R J Evans, and A Surprenant
January 1988, The Japanese journal of physiology,
R J Evans, and A Surprenant
August 1992, Pflugers Archiv : European journal of physiology,
R J Evans, and A Surprenant
November 1987, European journal of pharmacology,
R J Evans, and A Surprenant
January 1989, British journal of pharmacology,
R J Evans, and A Surprenant
July 1996, Journal of neurophysiology,
R J Evans, and A Surprenant
April 1996, The Journal of physiology,
Copied contents to your clipboard!