Transport of riboflavin in human intestinal brush border membrane vesicles. 1991

H M Said, and P Arianas
Department of Medicine, University of California School of Medicine, Irvine.

The transport of riboflavin across the brush border membrane of human intestine was examined using the established brush border membrane vesicle technique. Both osmolarity and temperature studies have concluded that the uptake of riboflavin by these vesicles is mostly the result of transport of riboflavin into an active intravesicular space with less binding to membrane surfaces. When an inwardly directed Na+ gradient was imposed, transport of riboflavin was linear with time for approximately 20 seconds of incubation and was significantly higher than in the presence of an identical K+ gradient. Initial rate of transport of riboflavin as a function of concentration was found to include a saturable component in the presence of an inwardly directed Na+ gradient but was linear in the presence of an identical K+ gradient. The apparent Km and Vmax of the Na+ stimulated transport process were found to be 7.26 mumols/L and 0.97 pmol/mg protein per 10 seconds, respectively. The addition of high concentrations of unlabeled riboflavin and its structural analogue lumiflavin to the incubation medium caused significant inhibition in the transport of 3H-riboflavin in the brush border membrane vesicle incubated in the presence of an inwardly directed Na+ gradient but not in vesicles incubated in the presence of an identical K+ gradient. Inducing a relatively positive intravesicular space with the use of valinomycin and an inwardly directed K+ gradient caused significant inhibition in the transport of riboflavin. On the other hand, inducing a relatively negative intravesicular space with the use of anions of different lipid permeabilities caused significant stimulation in the transport of riboflavin. These results demonstrate that riboflavin transport in human intestinal brush border membrane vesicle is through a carrier-mediated system. This system functions in the presence of a Na(+)-gradient and seems to transport the substrate by an electrogenic process.

UI MeSH Term Description Entries
D007408 Intestinal Absorption Uptake of substances through the lining of the INTESTINES. Absorption, Intestinal
D007583 Jejunum The middle portion of the SMALL INTESTINE, between DUODENUM and ILEUM. It represents about 2/5 of the remaining portion of the small intestine below duodenum. Jejunums
D008297 Male Males
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012256 Riboflavin Nutritional factor found in milk, eggs, malted barley, liver, kidney, heart, and leafy vegetables. The richest natural source is yeast. It occurs in the free form only in the retina of the eye, in whey, and in urine; its principal forms in tissues and cells are as FLAVIN MONONUCLEOTIDE and FLAVIN-ADENINE DINUCLEOTIDE. Vitamin B 2,Vitamin G,Vitamin B2
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23

Related Publications

H M Said, and P Arianas
April 1993, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
H M Said, and P Arianas
February 1987, The American journal of physiology,
H M Said, and P Arianas
December 1997, Biochimica et biophysica acta,
H M Said, and P Arianas
January 1989, The American journal of physiology,
H M Said, and P Arianas
November 1988, Biochimica et biophysica acta,
H M Said, and P Arianas
March 1994, Biochemical pharmacology,
H M Said, and P Arianas
April 1989, Mechanisms of ageing and development,
H M Said, and P Arianas
September 1984, Biochemical and biophysical research communications,
H M Said, and P Arianas
January 1991, Indian journal of biochemistry & biophysics,
H M Said, and P Arianas
January 1989, Biochimica et biophysica acta,
Copied contents to your clipboard!