Biotin transport in rat intestinal brush-border membrane vesicles. 1988

H M Said, and R Redha
Department of Pediatric Gastroenterology, Vanderbilt University School of Medicine, Nashville, TN.

Transport of biotin across rat intestinal brush-border membrane was examined using the brush-border membrane vesicle (BBMV) technique. Uptake of biotin by BBMV is the result of transport of the substrate into the intravesicular space with negligible binding to membrane surfaces. In the presence of a Na+ gradient (out greater than in), transport of biotin was higher with a transient 'overshoot' phenomenon. In comparison, transport of biotin in the presence of a choline gradient (out greater than in) was lower with no 'overshoot' phenomenon. In both jejunal and ileal BBMV, the transport of biotin as a function of concentration was saturable in the presence of a Na+ gradient (out greater than in) but was linear in the presence of a choline gradient (out greater than in). Vmax of the Na+-dependent transport system was 0.88 and 0.37 pmol/mg protein per s and apparent Kt was 7.57 and 7.85 microM in jejunal and ileal BBMV, respectively. Structural analogues inhibited the transport process of biotin. Unlike the electrogenic transport of D-glucose, the transport of the anionic biotin was not affected by imposing a relatively positive intravesicular potential with the use of valinomycin and an inwardly-directed K+ gradient, suggesting that biotin transport is most probably an electroneutral process. This suggestion was further supported by studies on biotin transport in the presence of anions of different lipid permeability. The results of this study demonstrate that biotin transport across rat intestinal brush-border membrane is by a carrier-mediated, Na+-dependent and electroneutral process. Furthermore, transport of biotin is higher in the jejunum than the ileum.

UI MeSH Term Description Entries
D007408 Intestinal Absorption Uptake of substances through the lining of the INTESTINES. Absorption, Intestinal
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D002794 Choline A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism. Bursine,Fagine,Vidine,2-Hydroxy-N,N,N-trimethylethanaminium,Choline Bitartrate,Choline Chloride,Choline Citrate,Choline Hydroxide,Choline O-Sulfate,Bitartrate, Choline,Chloride, Choline,Choline O Sulfate,Citrate, Choline,Hydroxide, Choline,O-Sulfate, Choline
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H M Said, and R Redha
January 1989, Biochimica et biophysica acta,
H M Said, and R Redha
April 1990, The American journal of physiology,
H M Said, and R Redha
April 1983, Pflugers Archiv : European journal of physiology,
H M Said, and R Redha
March 1994, Biochemical pharmacology,
H M Said, and R Redha
September 1984, Biochemical and biophysical research communications,
H M Said, and R Redha
January 1991, Gastroenterology,
H M Said, and R Redha
July 1988, The American journal of physiology,
H M Said, and R Redha
July 1998, Biochimica et biophysica acta,
Copied contents to your clipboard!