Human bronchus and intestine express the same mucin gene. 1991

B H Jany, and M W Gallup, and P S Yan, and J R Gum, and Y S Kim, and C B Basbaum
Department of Anatomy, University of California San Francisco 94143.

The amino acid and sugar composition of mucins from various organs is similar but not identical. This could arise by one or more of the following: organ-specific processing of a single core protein, organ-specific splicing of a single mucin mRNA, or organ-specific expression of various mucin genes. To begin to investigate the source of this variability, we examined (a) immunological cross-reactivity and (b) cDNA cross-hybridization, among several mucin-secreting organs of the human body. Peptide-directed antibodies raised against both nondeglycosylated (LS) and deglycosylated (HFB) intestinal mucin strongly stained mucous cells in the bronchial epithelium and submucosal glands, indicating homology between mucins of the bronchus and intestine at the peptide level. By screening a bronchus cDNA library with an intestinal mucin cDNA, SMUC-41, we isolated a bronchus mucin cDNA, HAM-1. This cDNA is 96% homologous to the first repeat of SMUC-41. HAM-1 hybridized to restriction fragments of human genomic DNA identical to those hybridizing to SMUC-41 on Southern blots. SMUC-41 also hybridized to polydisperse transcripts in the bronchus, cervix, gall bladder, and mammary gland, indicating mucin homology among all these organs at the RNA level. We conclude that the bronchus and intestine express a common mucin gene, which is likely co-expressed by at least several other mucin-secreting organs.

UI MeSH Term Description Entries
D007422 Intestines The section of the alimentary canal from the STOMACH to the ANAL CANAL. It includes the LARGE INTESTINE and SMALL INTESTINE. Intestine
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009077 Mucins High molecular weight mucoproteins that protect the surface of EPITHELIAL CELLS by providing a barrier to particulate matter and microorganisms. Membrane-anchored mucins may have additional roles concerned with protein interactions at the cell surface. Mucin
D001980 Bronchi The larger air passages of the lungs arising from the terminal bifurcation of the TRACHEA. They include the largest two primary bronchi which branch out into secondary bronchi, and tertiary bronchi which extend into BRONCHIOLES and PULMONARY ALVEOLI. Primary Bronchi,Primary Bronchus,Secondary Bronchi,Secondary Bronchus,Tertiary Bronchi,Tertiary Bronchus,Bronchi, Primary,Bronchi, Secondary,Bronchi, Tertiary,Bronchus,Bronchus, Primary,Bronchus, Secondary,Bronchus, Tertiary
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions

Related Publications

B H Jany, and M W Gallup, and P S Yan, and J R Gum, and Y S Kim, and C B Basbaum
October 1998, Gut,
B H Jany, and M W Gallup, and P S Yan, and J R Gum, and Y S Kim, and C B Basbaum
March 1993, Cancer research,
B H Jany, and M W Gallup, and P S Yan, and J R Gum, and Y S Kim, and C B Basbaum
August 1995, Investigative ophthalmology & visual science,
B H Jany, and M W Gallup, and P S Yan, and J R Gum, and Y S Kim, and C B Basbaum
November 1992, The Journal of biological chemistry,
B H Jany, and M W Gallup, and P S Yan, and J R Gum, and Y S Kim, and C B Basbaum
April 2016, Experimental eye research,
B H Jany, and M W Gallup, and P S Yan, and J R Gum, and Y S Kim, and C B Basbaum
January 1988, FEBS letters,
B H Jany, and M W Gallup, and P S Yan, and J R Gum, and Y S Kim, and C B Basbaum
January 1994, Experimental lung research,
B H Jany, and M W Gallup, and P S Yan, and J R Gum, and Y S Kim, and C B Basbaum
December 1998, Rhinology,
B H Jany, and M W Gallup, and P S Yan, and J R Gum, and Y S Kim, and C B Basbaum
November 1978, Biochimica et biophysica acta,
B H Jany, and M W Gallup, and P S Yan, and J R Gum, and Y S Kim, and C B Basbaum
December 1985, The Journal of biological chemistry,
Copied contents to your clipboard!