Electron microscopic characterization of the defectiveness of a temperature-sensitive mutant of Moloney murine leukemia virus restricted in assembly. 1977

P H Yuen, and P K Wong

The effect of temperature shiftdown on the assembly of ts3 virions was investigated by both scanning (SEM) and transmission (TEM) electron microscopy. Ts3 is a spontaneous temperature-sensitive mutant of Moloney murine leukemia virus (Mo-MuLV) which previous studies indicated to be defective in assembly or release of the virions. In the present study, both SEM and TEM revealed the following: (i) there were more cell-associated virions in ts3-infected cells grown at the nonpermissive temperature (39 degrees C) than either in cells grown at the permissive temperature (34 degrees C) or in wild-type MuLV-infected cells grown at 39 degrees C; (ii) there were more normal single particles than multiploids (virions with two or more pieces of genomic RNA) in ts3-infected cells grown at the nonpermissive temperature; (iii) there were more multiploids in ts3-infected cells grown at the nonpermissive temperature than either in cells grown at the permissive temperature or in wild-type MuLV-infected cells grown at the nonpermissive temperature; (iv) upon temperature shift from 39 to 34 degrees C, about 90% of the cell-associated virions dissociated from the cell surface. TEM studies also indicated that upon temperature shiftdown, virion assembly rapidly occurred. The above observations suggest that faulty assembly, which results in the production of multiploids, may not be the reason why ts3 virions accumulate on the cell surface at the nonpermissive temperature. The relatively higher proportion of multiploids found in ts3-infected cells grown at 39 degrees C compared with those grown at 34 degrees C may be due to the higher density of budding virions at the cell surface at the nonpermissive temperature, which increases the possibility of two or more particles assembling close to one another. The accumulation of ts3 virions in all stages of assembly at the nonpermissive temperature, together with the fact that rapid assembly and release of ts3 virions occurred on temperature shiftdown, indicates that virion assembly is restricted after it has been initiated. The probable role of altered glycoprotein(s) in restricting virion assembly is discussed.

UI MeSH Term Description Entries
D008979 Moloney murine leukemia virus A strain of Murine leukemia virus (LEUKEMIA VIRUS, MURINE) arising during the propagation of S37 mouse sarcoma, and causing lymphoid leukemia in mice. It also infects rats and newborn hamsters. It is apparently transmitted to embryos in utero and to newborns through mother's milk. Moloney Leukemia Virus,Leukemia Virus, Moloney,Virus, Moloney Leukemia
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D012190 Retroviridae Family of RNA viruses that infects birds and mammals and encodes the enzyme reverse transcriptase. The family contains seven genera: DELTARETROVIRUS; LENTIVIRUS; RETROVIRUSES TYPE B, MAMMALIAN; ALPHARETROVIRUS; GAMMARETROVIRUS; RETROVIRUSES TYPE D; and SPUMAVIRUS. A key feature of retrovirus biology is the synthesis of a DNA copy of the genome which is integrated into cellular DNA. After integration it is sometimes not expressed but maintained in a latent state (PROVIRUSES). Leukemogenic Viruses,Leukoviruses,Oncornaviruses,Oncovirinae,Oncoviruses,Oncoviruses, Type C,RNA Tumor Viruses,Retroviruses,Type C Oncoviruses,C Oncovirus, Type,C Oncoviruses, Type,Leukemogenic Virus,Leukovirus,Oncornavirus,Oncovirus,Oncovirus, Type C,RNA Tumor Virus,Retrovirus,Tumor Virus, RNA,Tumor Viruses, RNA,Type C Oncovirus,Virus, Leukemogenic,Virus, RNA Tumor,Viruses, Leukemogenic,Viruses, RNA Tumor
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications

Related Publications

P H Yuen, and P K Wong
September 1978, Nucleic acids research,
P H Yuen, and P K Wong
September 1992, Indian journal of experimental biology,
Copied contents to your clipboard!