Electron microscopic evidence for splicing of Moloney murine leukemia virus RNAs. 1978

A Panet, and M Gorecki, and S Bratosin, and Y Aloni

Poly (A) containing RNA extracted from Moloney murine leukemia virus infected mouse cells was hybridized with long single-stranded complementary DNA, prepared in detergent disrupted virions. Visualization of the hybrids in the electron microscope revealed among the structures, circles and circles with tails. Measurements performed on the circular molecules revealed two major species with circumferences corresponding to 3 and 8.2 kilobases. The latter structures had identical size to circles obtained after annealing of cDNA with the viral genome, 35S RNA. Circularization of a small viral RNA (3 kb) from infected cells in the RNA-cDNA hybrids is a direct evidence that like the 35S RNA it shares similar nucleotide sequences at both the 5' and 3' ends. The presence of 5' end sequences common to the two RNA species indicates the existence of a spliced viral RNA. Furthermore, based on the circularization of viral RNA in the hybrids, we suggest a new way to quantitate and determine the lengths of spliced RNA in retrovirus infected cells.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D008979 Moloney murine leukemia virus A strain of Murine leukemia virus (LEUKEMIA VIRUS, MURINE) arising during the propagation of S37 mouse sarcoma, and causing lymphoid leukemia in mice. It also infects rats and newborn hamsters. It is apparently transmitted to embryos in utero and to newborns through mother's milk. Moloney Leukemia Virus,Leukemia Virus, Moloney,Virus, Moloney Leukemia
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D009694 Nucleic Acid Precursors Use for nucleic acid precursors in general or for which there is no specific heading. Acid Precursors, Nucleic,Precursors, Nucleic Acid
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D013698 Templates, Genetic Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES. Genetic Template,Genetic Templates,Template, Genetic

Related Publications

A Panet, and M Gorecki, and S Bratosin, and Y Aloni
November 2005, Journal of virology,
A Panet, and M Gorecki, and S Bratosin, and Y Aloni
September 1966, National Cancer Institute monograph,
A Panet, and M Gorecki, and S Bratosin, and Y Aloni
February 1979, Virology,
A Panet, and M Gorecki, and S Bratosin, and Y Aloni
January 1984, Virology,
A Panet, and M Gorecki, and S Bratosin, and Y Aloni
January 1987, Anticancer research,
A Panet, and M Gorecki, and S Bratosin, and Y Aloni
November 1979, Biochimica et biophysica acta,
A Panet, and M Gorecki, and S Bratosin, and Y Aloni
July 1976, Journal of virology,
Copied contents to your clipboard!